Towards a Multimodal Interface for Mathematical Manipulation

Kyle Miller
kmill @mit.edu

29 January 2010

Abstract

This paper presents elements to a possible symmetric mul-
timodal user interface for manipulating mathematical ex-
pressions. We will discuss multimodal user interfaces,
what subset of mathematics is tractable, previous work in
this area, novel ideas to progress such multimodal inter-
faces, and a direction for future work.

1 Introduction

Mathematics is the study of the symmetries and structure
in abstract objects such as numbers and geometric figures
by using strictly logical arguments. And, as such, it is
a very broad subject. There are many subfields of study
such as geometry, analysis, and algebra which focus on
shapes, change, and structure, respectively. The distinc-
tion between these subfields is not clear-cut, however, as
they share techniques and methods which mathematicians
have found useful.

An important part of mathematics is to communicate
results to other mathematicians. For this, a rich language
of words, figures, and symbols has been devised, each
with a precise definition.

The following is a scene to motivate a multimodal user
interface.

1.1 Painting a Scene

Two colleagues are standing before a chalkboard dis-
cussing a mathematical idea, the roots of a quadratic poly-
nomial (these colleagues are not particularly advanced in
mathematical studies). The first colleague writes the def-
inition of a quadratic equation, 0 = az? + bx + ¢, draws
a picture of a general parabola, showing the relationship
between the roots and the intersections on the z-axis, and
begins to complete the square to derive the quadratic for-
mula.

Meanwhile, the second colleague is asking questions to
clarify—*"“Is that symbol supposed to be an z?”, “Is that

a parabola?”, or even “What happens if the parabola does
not intersect the x-axis?” if the second person is bright.

The second may also take the chalk to help with the
derivation or to draw a picture or an equation to aid in ask-
ing for clarification. Both speaking and drawing are sym-
metric since each of the colleagues are able to use these
media for clarification.

1.2 Symmetric Multimodal User Interfaces

Between a user and a computer exists a user interface,
which is the protocol with which the user manipulates the
computer and from which the user is supplied informa-
tion. From the point of view of the computer, this is a sort
of API to the real world.

There are many modes of input a user interface can
use. Commonplace are keyboards and mice, which al-
low a user to input characters and point at things, respec-
tively. Rarer are microphones for voice input, pen digi-
tizers for writing and drawing, video cameras for gesture
input, or electroencephalograms for controlling things via
brain waves.

Also, there are various modes for supplying informa-
tion to a user. For instance, a computer monitor or pro-
jector gives visual information, speakers give audio feed-
back, or force-feedback joysticks can supply a sense of
touch.

A multimodal user interface is a user interface which
blends together many input and output modes. The ad-
vantage of a multimodal user interface, if well designed,
is that the weakness of one mode can be offset by the
strengths of another. One example is the combination of
a keyboard and mouse. A mouse lets one navigate around
a two-dimensional on-screen interface of widgets. But,
being like a single finger, it is not suited for text entry.
However, this weakness can be augmented by a keyboard,
which people have used for the last hundred years for
speedy text entry, but which are not well suited for se-
lecting on-screen widgets.

Well designed multimodal user interfaces are still use-

ful if a user chooses to use any subset of modalities. For
instance, a cell phone with both buttons and speech recog-
nition should let one use either only the buttons (if the
room is noisy), only the speech recognition (if one’s hands
are busy), or both at once. However, for a natural inter-
face, speech shouldn’t simply be an equivalent to the but-
ton input, with voice commands such as “move cursor up”
or “type an ‘a”’.

A symmetric multimodal user interface is a user inter-
face in which the computer can respond to the user using
similar modalities. More interesting are symmetric mul-
timodal user interfaces which also allow for a dynamic
dialogue.

An example of this is a program by Aaron Adler under
Professor Randall Davis which had the user draw and talk
about a diagram representing a physical situation, such as
a ball above a lever, and the computer would ask questions
about what would happen, also drawing on the diagram
for clarification. Part of the user interface is an artificial
intelligence which knows a little about physical systems
that can maintain a coherent dialogue.

1.3 Analyzing the Scene

Between the colleagues there is a chalkboard, and they
are able to talk to each other. There is a symmetric, multi-
modal interface between the colleagues whose modes are
drawing and voice.

2 Mathematical Interactions

The goal of a symmetric multimodal user interface for
mathematics is ultimately to be able to replace one of the
two colleagues with a computer in a seamless manner.

This is a lofty goal, however, as this is equivalent to
passing the Turing test. A more reachable goal is to take
some aspect of the interaction between the colleagues and
make a program which can simulate that.

Here are a few kinds of general interactions one may
find between two people during a mathematical discus-
sion:

e Creating a relation between variables (using an equa-
tion)

Drawing a diagram or giving an example of an object

Asking to generalize a concept

Defining a new word

Proving the validity of a statement

¢ Finding a property of an object

Examples of these, although less friendly than a real per-
son, can be found in mathematics textbooks.

One particularly useful technique of mathematics
comes from algebra, and that is the manipulation of un-
known quantities in equations (said another way, using a
variable such as x). The behavior of these unknown quan-
tities is well defined, and algebraic analysis has proven
useful in fields beyond mathematics, such as physics and
economics.

Due to the utility and defined nature of equations, a
good first step in making a symmetric multimodal user
interface for mathematics is to make such a system for the
manipulation of mathematical equations. The user inter-
face should support some of the interactions described for
manipulating equations as objects.

3 Mathematical Expressions

Mathematicians have developed a fairly standard written
language for describing the relations between quantities.
The basic unit is an expression, which, when evaluated,
has a value. Expressions can be joined together with op-
erators or related to make equations or inequalities.

A basic expression is a variable, such as = or y, or a
quantity, such as 5. Expressions may be combined using
infix binary operators such as +, —, X, and <. There are
also unary operators such as NE Higher-order operators

exist such as - and [dz.
There are two modalities for communicating mathe-
matics: writing and speech.

3.1 Written Expressions

The recognition of written mathematics notation has been
well studied over the course of the last 20 years. A sur-
vey of the field is in [K. Chan and D. Yeung]. In fact,
Windows 7 ships with a mathematics notation recognizer.
For these reasons, the problem of analyzing mathematics
notation will not be discussed here.

3.2 Spoken Expressions

The written mathematical notation can, to a limited de-
gree, be spoken. Mathematicians frequently speak simple
expressions when conversing for clarification. Or, if a vi-
sual aid such as a blackboard or paper is not available, it
sometimes becomes necessary to speak expressions.
Speech recognition of verbal mathematics has not been
suitably researched. In fact, the author could only find

an application called MathTalk by Metroplex Voice Com-
puting, Inc., which provided a verbal command-based
language for constructing mathematical expressions on a
screen. To communicate % + x, a user would speak “One
over two. Move outside. Plus x.”

4 Direction of Research

Since a symmetric multimodal interface ought to be able
to use each of its modes, an expression manipulation in-
terface ought to be able to use both written and spoken
equations. Because written equations have been well stud-
ied, the direction of the research presented in this paper
was to focus on spoken equations, and, for the purposes
of maintaining a symmetric dialogue, for both recognition
and synthesis. Some progress was made in understanding
how equations are spoken and how to make a computer
speak equations.

5 Understanding Spoken Expres-
sions

First, to understand how equations are spoken, a list of
operators and possible ways of reading the equations was
compiled.

e a +b. “the sum of a and b”, “a plus b”, “a and b
added [together]”

e a — b. “a minus b”, “subtract b from a”, “the differ-
ence of a and b’

e a-b. “the product of a and b”, “a times b”, “a multi-
plied by b”

e . “adivided by b”, “a over b”, “the quotient of a
and b’

e \/a. “the square root of a”, “the root of a”, “root a”,
“radical a”

o a2 “a squared”, “a to the second power”, “a to the

power of two”

CLINT3

a to the nth power”,

n

e a". a to the power of n”

o f(x).“f of 27, “f applied to =

EEINT3

e f(x)=a.“fofxequalsa”, “f of zisa”

. Z?:a c. “the sum of ¢ for ¢ from a to b”, “the sum of
c for i equals a to b”, “the sum for i equals a to b of

(1)

C

From this, an informal study was devised for which vol-
unteers were asked to attempt to speak twenty-five expres-
sions of varying difficulty. The expressions were chosen
to determine how precedence of operators would affect
the grammar chosen for the utterance.

I.5+x
2. 2x+y

3. 1+ay

4. 5+z+,+¢
a(z? +2)
(a+b)(c+d)
5ty

x—1

© ® =N @

2
P
10. 524+ =2
1. x4 27+t
12. 22 + 25 + 27 + a5
13. €* +Inz + cosy + sin z 4 tan? 0 + zsin® «
14. logy (x +2) + 72
15. limp—o (1+h)*
16. az® + ba* + ca® + dx? + ex + f
17, =btvbr=dac
18. 3 42
19 =+ >0, (1+3i+ %)
20. f(z) =V1+a2
21. 2y/1+ f(1 —sinz) + 2
1—z

22. —
V f(zz)
23. fol z? dz

24, [<1+ 1+(§§)2> dx

25. ye{1,2,3,z,/1+ z,e,m €0}

There were seven people who volunteered, and their ut-
terances were recorded. The volunteers commented that
they thought the more complicated expressions were am-
bigous to say.

lgde]
'ﬂ‘h,_*
,w]

Figure 1: The utterance for a(x? + 2), “a times the quan-
tity x squared plus two,” as a sonogram (above) and as a
pitch representation (below).

5.1 Analysis

Analyzing the recordings, it was found that the volunteers
made many mistakes, had many pronunciations for sym-
bols (for instance, “z” was pronounced as “zed” by one
volunteer), and generally chose the infix location for op-
erators (“a plus b” instead of “the sum of a and b”).

In speech, prosody is the patterns in pitch an stress. In-
terestingly, each volunteer tended to use similar pitch con-
tours for the utterances.

5.1.1 Pitch Analysis

Speech, unlike the sound from a music instrument, does
not have a definite pitch. Fundamentals can be missing,
‘s’ sounds and other consonants are pitchless, and multi-
ple pitches are sounded at once (for vowels). However,
from listening to the recordings, it is clear that there is a
general sense of pitch contour.

A novel way to analyze the pitch contour of a sample of
sound is to first create a sonogram of the sound sample. A
sonogram is a graph with time and frequency axes, and at
each point, the amplitude of of the frequency at that par-
ticular time is recorded. The upper graphic of figure 1 is a
sonogram where blackness corresponds to the magnitude.

Then, for each column of the sonogram, we imagine bar
whose linear density is the magnitude at each frequency.
We then find the center of mass of this bar. Or, stated
differently, for frequency distribution at time ¢, f(w), be-
tween frequencies a and b, we find the “pitch center” p;:

_ f: xfi(z) dz
ff fe(x) dx

Then, we can also assign an “average energy” e; to each
time, which we define, simplistically, to be

Dt 6]

b
et:/ fi(x) dx 2)

Then, we can create a new sonogram which only has
pitch p, with magnitude e; at each time ¢. An example of
this is in the lower graphic of figure 1.

To perform this analysis, the code reproduced in section
8.1 was developed. This code also performs a low-pass
filter on the changes in p; to produce a smoother pitch
contour than that seen in figure 1.

An interesting feature to note is that any time an ‘s’
sound occurs, p; shoots up a few hundred cycles per sec-
ond. These spikes should be ignored when looking at the
pitch contour because they are not heard as pitches.

Also, when converting the sonogram back into a sound
clip, the simplified sound turns out to sound remarkably
like the original utterance.!

5.1.2 Pitch Synthesis

The reason for examining the problem of pitch synthesis
is that, for a symmetric dialogue, it feels more natural if
the computer can respond in a somewhat realistic manner,
with some semblance of prosody.

After examining the pitch contours, a simple model for
the pitch countour of utterances of mathematical expres-
sions was developed. The general idea is that an expres-
sion as a unit has a global pitch contour to denote that the
speaker is saying an expression. And, each subexpression
also follows this some general contour. Then, the many
levels of pitch contours are combined to make the contour
of the entire utterance.

Also, there are pauses between subexpressions to help
make the full expression clear. As can be seen in figure 1,
the gap between “quantity” and “2” is much larger than
the gap between “squared” and “plus.” We model this as
a doubling in the size of the gap between each subexpres-
sion with respect to the gap between each subsubexpres-
sion.

Pitch contours are modeled as piecewise linear func-
tions from time to standard deviations away from the
mean pitch. Thus, adding the contours simply means
adding the standard deviations together.

A full description of the model is the code reproduced
in 8.2. It uses MBROLA, which synthesizes voice given
phonemes, timings, and a pitch contour.

The main data structure in the code is an utterance,
which is composed of a list of utterances which should
be concatenated and a pitch contour (which is a list of

n fact, when on winter break, the author decided to experiment
with this and take his sister’s kazoo, an instrument through which one
hums, and attempt to communicate by altering the pitch of his hum and
modulating the volume with his hand. Simple ideas were not hard to
convey.

pairs of times and pitches, where the times are percent-
ages through the concatenated utterances).

The main pitch contours of the model are in
utter-oper, which handles pitch contours of opera-
tors in a term-by-term manner, using general contours the
volunteers used.

The current model is, as previously stated, very simple.
A few improvements can be: adding “quantity” support to
denote a quantity which has an operator of reduced prece-
dence, being more natural than the pause doubling model;
similarly, using “open parenthesis” and “close parethe-
sis,” which at least one volunteer used; prefix operators;
summation notation; reordering of terms when there is an
associative operator to simplify the utterance, which one
volunteer did; and analyzing the complexities of various
choices of utterances to find the clearest one.

It must be noted, though, that this ability to speak math-
ematical expressions clearly is not important to perfect
since real people have a hard time doing this anyway, and
the language can be very ambiguous. This model was de-
veloped to make it bearable to listen to the computer talk
about such things.

It would be nice to integrate this model into an exist-
ing text-to-speech engine to give the system more words
(the existing code only can speak ten different words, all
hand coded) as well as enabling actual speech around the
expression.

5.1.3 Speech Recognition

What has not been examined is the recognition of spoken
mathematical expressions. It may be possible to interface
with an existing speech recognition package and insert
hooks for pitch to make the recognition more accurate.
The pitch may actually help signal when a mathematical
expression is happening.

6 An Interface

Ultimately, the goal of these recognition technologies is
to be able to create a multimodal user interface for doing
some kind of mathematical manipulation in a very natural
manner. The interface will look like a large whiteboard.
Equations can be written on the board. If the equations do
not make sense, the computer will ask the user what they
meant to write. Then, the user can ask the computer to
help it simplify an expression, or to solve an equation for
a particular variable using verbal statements such as “sim-
plify this [pointing to the board] expression” or “solve this
[pointing to the board] equation for x.” The computer will
then write the results on the board, perhaps commenting

about the result, such as “here’s an expression for x, but
remember it must be greater than zero.”

Also, to be natural, if the user verbally asks the com-
puter to “factor z2 — z.” then the computer ought to also
respond verbally with “it’s z(z — 1).”

However, to fully understand the proper interaction, a
study of mathematicians at a chalkboard should be carried
out to better nail down the experience.

7 Future Work

Here are some ideas for (long-term) future work:

e Geometry. Using sketch recognition technology, ge-
ometric diagrams (as found in a geometry textbook
or The Elements by Euclid) could be a main part of
interaction. There is a grammar of symbols, denot-
ing, for example, congruency.

The system would have a knowledge of geometry,
such as the fact that parallel lines never intersect (as-
suming Euclidean geometry, of course). When there
are unfulfilled constraints in the diagram, the system
could prod the user to fill in the gaps. Likewise, the
user could ask the system to help find constraints.

This system would entail developing a theorem
prover system and encoding well known theorems
from geometry.

e Theorems and definitions. In mathematics, words
are defined in a specific way using previously defined
words. Developing the interaction for telling the sys-
tem something such as “an even number is a multiple
of two” would be a great undertaking.

A theorem is a statement about a property of an ob-
ject if some conditions are satisfied. Similarly, it
would be interesting to be able to describe a theorem
to the computer. Even more interesting would be to
be able to either explain or ask for an explanation of
why a theorem is true.

e Implement an undergraduate in mathematics.
With where the previous two items in the list were
going, the author thought this was the most reason-
able next step in the progression. Beware the person
asking to get this kind of project funded.

8 Code

The following is code which was written to analyze data
and test models.

8.1 avg-img.py

#!/usr/bin/python
from PIL import Image
import sys

infile = sys.argv([1l]
outfile = sys.argv[2]
inp = Image.open(infile)

pixels

inp.load()

width, height = inp.size

colweights = [sum([pixels[col, row][0]
for row in xrange (0, height)])
for col in xrange (0, width)]
maxwelight = max (colweights) /255.0
loc = 0.5
for col in xrange (0, width)
avg = 0.0
moment = 0.0
for row in xrange (0, height)
avg += pixels[col, row][0]/255.0
moment += ((pixels[col, row][0] = row)/

(255.0 * height))

pixels[col, row] = (0, 0, 0)
if avg == 0.0
pass
else
low pass filter on the pitch center
loc = (avg/maxweight * (moment/avg)
+ (l-avg/maxweight) * loc)
r = int (height«*loc)
v = int (255.0xavg/maxweight)
pixels[col, r] = (v, v, V)

inp.save (outfile)

8.2 conv.lisp

;75 convert a mathematical expression
;;; into an mbrola file

(defvar *wordsx ' ())
; the phonemes for a word are a list of pairs
; of strings and timings. Each string is an
; mbrola phoneme code
(defun add-word! (symb phonemes)

(push (cons symb phonemes) *wordsx))
(defun get-word (word)

(cdr (assoc word xwordsx)))
(add-word! ’"a ’ (("EI" 160)))
(add-word! ’'x ' (("E" 100)

(vvku 40)

(llsll 60)))
(add-word! b 7 (("b" 40)

(lli" 160)))

(add-word! "1 " (("w" 60)
("V" 90)
("n" 70)))
(add-word! "2 " (("t"™ 40)
("u" 210)))
(add-word! ‘plus ' (("p" 40)
("l" 60)
(“v" 80)
("s" 80)))
(add-word! "times ' (("t" 20)
("AI" 70)
("m" 70)
("z" 80)))
(add-word! ’'over ’ (("@U" 80)
(“v" 60)
("r=" 100)))
(add-word! "half ' (("h" 40)
("{" 80)
("f" 80)))
(add-word! "one-half ’ (("w" 40)
("V" 75)
("n" 50)
("h" 40)
("{" 80)
("f" 80)))
(add-word! 7_ " (("_" 120)))

(defun pause (time)
(format ' () "_ "a"$" time))

a phoneme utterance is a list of
;; phoneme/timing pairs

(defun phoneme-utterance (phonemes)

(list ’phoneme-utterance phonemes))
; an utterance utterance is an utterance
which is composed of other utterances (for
instance, phoneme-utterances). The pitches
argument is a list of pairs of times and
pitches. The times are percentages through
the utterance. The pitches are the standard
;; deviation from the mean.

(defun utterance-utterance (utterances pitches)
(list ’utterance-utterance utterances pitches))

rr

(defun rendered-utterance-length (rutt)
(apply #’+ (mapcar #’cadr (car rutt))))

takes a list disps of (x_i y_1i) pairs.
Linearly interpolates to find y for the
X argument

I
I

rr

(defun lin-val (x disps)
(let ((before (remove-if-not
#’ (lambda (a)
(<= (car a) x))
disps))
(after (remove-if-not
#’ (lambda (a)
(>= (car a) x))
disps)))
(cond ((null before)

cadar after)

null after)

cadar (last before)))

= x (caar after)) (cadar after))
(let ((x1 (car (last before)))

(

(

(
(
(
(
(
(t

(x2 (car after))) (floor

(+ (cadr x1) (x 80
(* (- x (car x1)) (/ (cadr utterance)
(/ (- (cadr x2) *minimum-pausex)))))
(cadr x1)) "))
(- (car x2)
(car x1)))))))))) ((phoneme-utterance)
(list (cadr utterance)
;7 the current value of the pause between (list
;7 units of an expression 7 (0 0)
(defvar xpausex 1) (list (- (apply #’'+
;7 the minimum value of a pause seen (so pauses (mapcar #’cadr
;; can be normalized later) (cadr utterance)))
(defvar sminimum-pausex* 1) 1)
0))))
(defun utter-relative-pause (a)
(if (< a *minimum-pausex) ((utterance-utterance)
(setf *minimum-pausex a)) (let* ((utterances (mapcar
(list ’'relative-pause a)) #’ render-utterance
(cadr utterance)))
; given perc-displacements (a list of pairs of (lengths
; percentage/SD pitch displacement) and the (mapcar
; length through which they act, add the linear #’ rendered-utterance-length
; interpolation to time-displacements (a list of utterances)))
; time/SD displacement pairs) (list (apply #’append
(defun pitch-combine (len perc-displacements (mapcar #’car utterances))
time-displacements) (pitch-combine
(let ((disp (mapcar (apply #’+ lengths)
#’ (lambda (d) (caddr utterance)
(list (/ (» (car d) len) (apply
100) #’ append
(cadr d))) (loop
perc-displacements))) for u in utterances
(let ((displaced for 1 in lengths
(loop for td in time-displacements summing 1 into cum-len
collect (list (car td) collect
(+ (cadr td) (mapcar #’ (lambda (p)
(lin-val (car td) (list (- (+ cum-len
disp)))))) (car p))
(sort 1)
(append displaced (cadr p)))
(loop for td (cadr u))))))))))
in (remove-if
#’ (lambda (a) ;7 takes data structure from render-utterance
(assoc (car a) ;7 and outputs mbrola codes
displaced)) (defun render-phonemes (rend-utt mean sd)
disp) (setf *minimum-pausex xpausex)
collect (format " () ""{"a"s"}"
(list (car td) (loop for phon in (car rend-utt)
(+ (cadr td) summing (cadr phon) into loc
(lin-val collect
(car td) (let* ((len (cadr phon))
time-displacements))))) (1 (= loc len)))
#’ (lambda (a b) (format
(<= (car a) (car b))))))) () "Ta Ta™{"a"}"
(car phon)
;; takes an utterance, and outputs a data (cadr phon)
;7 structure which can be rendered by (mapcar
;7 render-phonemes #’ (lambda (tim)
(defun render-utterance (utterance) (format ' ()
(case (car utterance) " Ta "a"
(floor
((relative-pause) (» 100
(list (list (/ (= (car tim) 1)
(list "_" len)))

(floor :direction :output

(+ mean :if-exists :supersede)))
(x sd (let ((str (render-phonemes
(cadr tim)))))) (render—utterance
(remove—-if-not ; (utter-math ' (» (+ x 1) (+ a 2)))
#’ (lambda (tim) ; (utter-math ' (+ (» 2 x) b))
(and (>= (car tim) 1) (utter-math 7 (+ (/ 1 2) x))
(<= (car tim) loc))))
(cadr rend-utt)))))))) 240 20)))
(format t ""a" str)
;; takes a list of words and puts them together (format out ""a" str)
;; as an utterance (format out ""a" (pause 120)))
(defun utter-words (&rest words) (close out))
(utterance-utterance
(mapcar (sb-ext:run-program
#’ (lambda (w) "/home/kmill/mbrola/mbrola-linux-i1386"
(phoneme-utterance (get-word w))) ’("/home/kmill/mbrola/usl/usl"
words) "“conv.pho"
"((0 0)))) "“conv.wav"))
(sb—ext:run-program
;; takes a mathematical expression and returns "/usr/bin/mplayer"
;7 an utterance representing the expression " ("“"conv.wav"))
(defun utter-math (expr)
(let ((*pausex* (/ *pausex* 2)))
(cond 9 References

((atom expr)
(phoneme—-utterance (get-word expr))) . . .
D. Blostein and A. Grbavec. Recognition of Mathematical

((equal ' (/ 1 2) expr) Notation. Handbook on Optical Character Recognition
(phoneme—-utterance (get-word ’'one-half))) and Document Image Analysis.

((eq '+ (car expr))

(utter-oper (cdr expr) ’plus)) E. Tapia and Raul Rojas. Recognition of On-Line
Handwritten Mathematical Systems in the E-Chalk

{teq "x (car expr)) System. ICDAR 2003

(utter-oper (cdr expr) ’times)) : :

((eq '/ (car expr)) J. LaViola Jr. and R. Jeleznik. MathPad?: A Sys-

(utter-oper (cdr expr) ‘over))))) tem for the Creation and Exploration of Mathematical

Sketches. ACM.

;; takes the arguments to an operator and the
;7 operator itself and then returns an

;; utterance K. Chan and D. Yeung. Mathematical expression
(defun utter-oper (addends oper) recognition: a survey. IIDAR 2000.
(if (= 1 (length addends))
(utterance-utterance
(list (utter-math (car addends))) N.E. Matsakis. Recognition of Handwritten Mathe-
7 ((0 0) (99 -2))) matical Expressions. Thesis, Massachusettes Institute of

Technology. 1999.

(utterance—-utterance
(list

(utterance-utterance R. Zanibbi. Recognition af Mathematics Notation
(list (utter-math (car addends))) via Computer Using Baseline Structure. 2000.
(if (= 2 (length addends))

7((0 0) (30 0) (60 -1) (99 3))
"((0 0) (50 1) (99 3))))

(utterance-utterance

(list (utter-relative-pause *pausex)

(utter—-words oper))
"((0 2) (80 2) (99 4)))
(utter-oper (cdr addends) oper))
"((0 0) (99 0)))))

;; example test code
(let ((out (open "“conv.pho"

