
A Non-Trivial Group-Theoretic Algebraic Manipulation Engine

Toolkit Thing

Kyle Miller
kmill@mit.edu

Scott Kovach
kovach@mit.edu

Sagar Indurkhya
indurks@mit.edu

8 May 2009

Abstract

We developed a framework to allow for
deep group-theoretical manipulations. This
paper will describe the design ideas and ca-
pabilities of our system.

1 Introduction

Group theoretical manipulations are very difficult.
The orders of groups which are commonly useful are
quite large. E8, a simple Lie group of dimension 248,
has nearly seven-hundred million elements. The Ru-
bik’s cube has about forty-three quintillion permu-
tations. Needless to say, directly working with this
many elements by hand is time-consuming.

Instead, a symbolic system to interact with groups
is immediately useful. Others have developed similar
systems such as the Magma computer algebra system
by the Computational Algebra Group.

Our system can currently solve certain classes of
equations on groups, and, in a limited manner, han-
dle other parts of abstract algebra such as fields.

2 Groups

A group is a structure G composed of a set of ele-
ments and a binary operation between two elements
in the set [1]. We say an element is in a group if it
contained in the set of elements. The binary opera-
tion is usually denoted by ◦ : G×G → G.

A group must satisfy four properties:

• Closure. If we have a, b ∈ G then a ◦ b ∈ G.

• Associativity. Given elements a, b, c ∈ G, then
a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• Identity. There is an element e ∈ G such that
e ◦ a = a ◦ e = a for all a ∈ G.

• Inverse. Every element a ∈ G has an inverse
denoted by a−1 which is also in G such that
a ◦ a−1 = a−1 ◦ a = e, where e is the group
identity.

A group must have at least one element, and the
set of elements may be infinitely large.

2.1 Examples

An example of a group is the set of isometric symme-
tries of a square which leave a square in exactly same
position and orientation, such as reflections about
the axes and 90◦ rotations. The symmetries may be
composed, and each of these compositions are also in
this group. The group of symmetries on an n-gon is
known as the dihedral group Dn.

Another example of a group is the permutations
of the ordered tuple (1, . . . , n). The group opera-
tion a ◦ b of tuples a and b is permuting the el-
ements of a by the permutation b. For example,
(1, 3, 2) ◦ (3, 1, 2) = (2, 1, 3). Note that (1, . . . , n) is
the group identity. The group whose elements are all
n! permutations of (1, . . . , n) is known as the symmet-
ric group Sn. Note that permutations will be writ-
ten in one-line notation throughout this paper, and
the computer representations of permutations are 0-
indexed instead of 1-indexed for computational con-
venience.

Addition on the integers modulo n also constitutes
a group known as the cyclic group Cn. The defining
characteristic of a cyclic group is that there is an ele-
ment a ∈ Cn such that any b ∈ Cn can be denoted by
a ai for some i, where exponentiation means repeat-
edly applying the group operation. This a is called

1



the group generator. For the addition modulo n ex-
ample, 1 generates the group.

3 Group Interface

The abstract interface for a group is fairly straightfor-
ward. The following must be available for any group:

• (group-operation G) returns a procedure
which takes two elements a, b ∈ G and returns
a ◦ b.

• (group-elements G) returns a list of all of the
elements in G. This is not guaranteed to com-
plete, especially in the case of infinite G.

• (is-element? G e) is a predicate which ex-
presses the validity of e being an element of G.

An interesting modification to examine in the fu-
ture is making group-elements return a stream.

3.1 Finite Groups

One kind of group representation using this interface
is a group with finitely many elements, all of which
are known. The constructor for such groups takes a
list of elements and a corresponding group operation.

The implementation of the interface for finite
groups is a matter of directly using the information
given to the constructor.

3.2 Generator Groups

A group may have infinite elements, and storing all
of the elements of such a group is impractical. An-
other representation is storing the generators of the
group, those elements which, when combined using
the group operator, can yield all of the elements in
the group. For instance, the integers can be generated
using the element 1 and the operator + (assuming we
know the inverse to addition is negation, otherwise 1
and −1 suffice as generators).

However, this representation is also useful for such
groups as the permutations of a Rubik’s cube. Al-
though there are finite permutations, it may not make
sense to actually store all such permutations in mem-
ory to work with the group.

4 Tagging Information

It is useful to tag groups with hints. For instance,
it may be computationally prohibitive to brute-force

the inverse operation for the group of integers under
addition which was mentioned in section 3.2. The
inverse operation, then, may be tagged to the group.

Tagging inverses is among the more useful ap-
plications for tagging in the current system. Group
cosets are also tagged.

The interface to tags is essentially the same as to
hash tables, since tags are basically key/value pairs.

Weak hash tables are used to ensure tags are not
stored if the object which they reference is garbage
collected.

5 Threaded Solvers

Group-theoretical manipulations do not always have
a simple means of solution, and, without consider-
able effort, it may also be difficult to determine which
method among a set of methods is the most efficient.

The generic dispatch system ghelper.scm is
partly able to do the selection of a solution method.
However, the limitation with the generic dispatch sys-
tem is that predicates must be able to guarantee re-
turning a value. However, there are cases in which it
is hard to determine whether or not a predicate will
even halt, such as is-finite? on a generator group.
And, is-finite? would necessarily be generic itself.

To remedy this, our development was to evaluate
all known methods in parallel in the hope that at least
one method will ultimately yield the correct answer
by a concerted effort of uninspired decision-making,
albeit with some loss in efficiency.

A threaded solver T is a set of solution proce-
dures. A solution procedure ti ∈ T is a procedure
which takes the same arguments as T and either re-
turns the value of T or, if it is unable to determine a
value, it returns the special element ∅. All ti which
are able to return a value must return the same value,
otherwise it is an error.

When T is executed, each of its procedures are
executed in parallel as threads, and when one of the
threads ti returns a non-∅ value, all of the threads
are immediately stopped, and the value returned by
ti is the return value of T .

5.1 Solution Pipes

Obviously, there must be some mechanism to link to-
gether a thread which is requesting the result of a
threaded solver and each of the threads within the
threaded solver. This mechanism is a device like a
pipe.

2



The solution pipe can be read from and written
to by multiple processes. Only one valid answer may
be written to a solution pipe, but a solution pipe may
accept multiple ∅ elements. When a threaded solver
is executed, a solution pipe is created. The solution
pipe is notified of each of the new threads, and the
outputs of the threads are attached to the input of
the solution pipe. The threaded solver then waits on
the output of the solution pipe.

Then, the pipe keeps track of all threads which
have returned a value. If the threads all return ∅,
then the threads which are waiting on the result of
the solution thread are notified that no solution was
found. However, if a thread returns a valid value,
all of the threads piped into the solution thread are
notified to stop.

5.2 Nested Threaded Solvers

The solvers in a threaded solver can in turn ex-
ecute and wait on more threaded solvers. And,
in turn, these too can execute and wait on more
threaded solvers. Handling timesharing is rela-
tively straightforward. In systems which require
starting a special environment to begin multitasking
(such as conspire.scm), the addition of a procedure
such as (maybe-with-time-sharing-conspiracy
thunk ) will suffice, which only initializes a new time
sharing environment if no other running time sharing
environment currently exists.

However, an optimization can be made if two or
more threads each want to run a threaded solver with
the same arguments (by equality). By storing each
solution pipe in a dictionary, indexed by both the
threaded solver and the arguments, existing solution
pipes may be retrieved and attached to threads re-
questing the same threaded solver with the same ar-
guments.

Since this dictionary is storing each of the solu-
tions pipes, we are essentially memoizing the results
of the threaded solvers while ensuring each threaded
solver with given arguments is only ever executed
once. For space considerations, the dictionary may
be a weak hash table so currently unused solution
pipes may be garbage collected if necessary.

It was mentioned earlier that solver threads in a
threaded solver may return ∅. There is a possibility
that all of the threads in a threaded solver may return
∅, and in this case, the solution pipe sends a signal to
the threaded solver which owned the threads that no
solution was found. In the case of a single threaded

solver, the solver simply stops the computation by
reporting an error to the REPL.

However, in the case of nested solvers, the error
does not need to stop the computation and destroy
the threaded solver environment. For instance, let us
have threaded solvers T1 = {u1, u2} and T2 = {v1}.
Let the thread u1 require the evaluation of T2, the
thread u2 require significant time to execute, and the
thread v1 be guaranteed to return ∅. Then, com-
puting T1(a) for some argument a will initialize a
threaded solver with threads u1(a) and u2(a). The
thread u2(a) will in turn initialize and wait on the
threaded solver T2(b), with some other argument b,
which then executes the thread v1(b). Now, we have
threads u2(a) and v1(b) actively running with u1(a)
waiting on the completion of v1(b). The thread v1(b)
returns ∅, so the solution pipe connecting v1(b) to
T2(b) sends a signal to T2(b) that no more solutions
exist.

At this point, the entire computation could be
stopped because we have a subproblem which has
no solution. However, a more intelligent action is to
make u2(a) send ∅ to its connect solution pipe. Thus,
the solution pipe which T1 is waiting on is sent ∅, and
it notes that there is still one thread which able to
return a value. And, after some time, u1(a) returns,
and the solution pipe gives the value to T1(a), which
then returns the value returned by u1(a).

Note that a call to T1(a) at this point will imme-
diately return the value of u1(a) without starting a
threaded solver because there is a solution pipe stored
in the dictionary.

If u1(a) were to instead also return ∅, then, be-
cause the REPL is not waiting on any other threaded
solvers, an error is raised.

If multiple threaded solvers are waiting on the
same subproblem, the shared solution pipe retrieved
from the dictionary blocks the threaded solvers un-
til the computation is completed. However, if the
computation fails with ∅, then each of the wait-
ing threaded solvers must be notified. Thus, solu-
tion pipes also record which threads are awaiting
a return value. And, so these threads are stopped
correctly, the threads are forced to return ∅ before
they are stopped. To do this, the thread record in
conspire.scm was modified to also store the solu-
tion pipe waiting on the return value of a thread.

5.3 Generic Threaded Solvers

To use the threaded solver engine, there is an inter-
face similar to ghelper.scm. The three important

3



parts of the interface are:

• (make-threaded-solver after-procedure

arity ) creates an object which is a procedure
of arity arguments which, when evaluated, ei-
ther binds to an existing solution pipe or creates
a new solution pipe and starts attached solu-
tion threads. The procedure after-procedure
is a procedure of arity + 1 arguments which
takes the return value and the given arguments,
which can be used to memoize the return value
elsewhere, for example.

• (defsolver threaded-solver

solution-thread ) attaches a solution thread
solution-thread of the correct arguments to the
threaded solver threaded-solver.

• unknown is a unique element which represents
the return value ∅. It is unique by eq?.

5.4 Example

The following is an example of the nested threaded
solver described in section 5.2.

(define t1 (make-threaded-solver #f 1))

(defsolver t1
(lambda (a)
(display "u1")
(let lp ((i 1000000))
(if (= i a)

#t
(lp (- i 1))))))

(defsolver t1
(lambda (a)
(display "u2")
(t2 (- a 1))))

(define t2 (make-threaded-solver #f 1))

(defsolver t2
(lambda (b)
(display "v1")
unknown))

The #f in make-threaded-solver represents that
we do not wish to do anything special with the return
value of the threaded solver.

We could use this argument for t1 if, for exam-
ple, we wish to know what is being returned by the
threaded solver for debugging purposes,

(define t1
(make-threaded-solver
(lambda (ret a)
(printf "t1 returned ~a given ~a"

ret a))
1))

Although contrived, these examples illustrate the
general mechanism of a threaded solver.

5.5 Real Example

A real example of the use of threaded solvers is to
check the group axioms for a group.

(define group?
(make-threaded-solver #f 1))

(defsolver group?
(lambda (g)
(if (cyclic? g)

#t
unknown)))

(defsolver group?
(lambda (g)
(and (group-closed? g)

(group-associativity? g)
(not (eq? no-inverse

(group-identity g)))
(group-invertible? g))))

If a group G has the property of being cyclic, then
we know G is a group without further checking. Oth-
erwise, we need to check the axioms themselves. And,
we aren’t quite sure procedure will finish first with a
non-unknown value.

The procedure cyclic?, too, is a threaded solver.
It checks to see if G either was generated with
(make-cyclic-group n ) or there is an element a ∈
G such that for all b ∈ G, b = ai for some i.

5.6 Difficulties

There are still some unsolved difficulties and direc-
tions for improvement with the threaded solver sys-
tem.

For instance, it is not trivial to denote the equiva-
lence of procedures. And so, if two threads simultane-
ously return equivalent procedures, the solution pipe
is unable to determine the equivalence, and therefore

4



raises an error. Currently, the system presumes pro-
cedures returned by threads are equivalent without
further checking.

An example of a place which requires this behav-
ior is in the derivation of the group inverse operation.

(define group-inverse-operation
(make-threaded-solver #f 1))

(defsolver group-inverse-operation
(lambda (g)
(get-tag g ’inverse unknown)))

(defsolver group-inverse-operation
(lambda (g)
(let ((inverses

(map (lambda (a)
(group-inverse g a))

(group-elements g))))
(lambda (a)
(let lp ((elts (group-elements g))

(inv inverses))
(cond ((null? elts) no-inverse)

((equal? a (car elts))
(car inv))

(else (lp (cdr elts)
(cdr inv)))))))))

In the first case, the group may have been tagged
with an inverse operation. A valid example of this is
to tag the the infinite group of integers under addition
with the inverse (lambda (a) (- a)). However, if a
group has not been tagged, we must brute-force the
group inverse operation and construct such a proce-
dure.

Alternatively, group-inverse-operation could
return a procedure which requests group inverses via
group-inverse. However, the system then may re-
turn such a function even if the inverse tag on the
group exists. Although, in this case there is no
problem because group-inverse can explicitly call
get-tag to see if a group inverse has been tagged.

6 Solving Equations

A simple equation to solve is a = b ◦ c where a, c ∈ G
are known and we want the element b. Since every
element has an inverse, b = a ◦ c−1, so to solve the
equation we can compute ((group-operation g) a
(group-inverse g c)).

A fancier manipulation, which also takes advan-
tage of the framework, is the problem of solving an

equation of the form b = cn ◦ . . . ◦ c1 ◦ a for unknown
elements ci ∈ G, where a, b ∈ G. The ci are taken
from a given set of allowable elements.

There are two motivations for being able to solve
equations of this form. The first is the Chicken
Nugget problem, and the second is solving the Ru-
bik’s cube.

6.1 Chicken Nugget Problem

Stated simply, the problem is that we wish to pur-
chase n chicken nuggets, and we are only allowed to
order chicken nuggets in boxes of 5 and 8. First, how
many of each kind of box must we order? Second,
what is the minimum number of nuggets such that
for any greater number of chicken nuggets we may
guarantee being able to purchase exactly that many
nuggets?

We can look at this problem as finding ci ∈ 5, 8
such that G is the group of integers under addition.
Since the system is not yet smart enough in handling
infinite groups, however, we will instead use a cyclic
group with of much greater order than the number
of nuggets we wish to purchase. Although a series of
ci will be found, if their integer sum exceeds that of
the number of nuggets we wish to purchase, then the
solution will be thrown out.

Using the equation solver, we can write the fol-
lowing:

(define g (make-cyclic-group 1000))
(define (solve-chicken-nuggets n)
(solve-to-element g n ’(5 8) 0))

where n is the number of nuggets we wish to pur-
chase. The third line represents solving the equation
n ≡ 5a+8b (mod 1000) for a and b. The return value
is a list of 5 and 8 which sum to n if a solution ac-
tually exists, otherwise the sum will greatly exceed n
(but still be equivalent modulo 1000).

6.2 Rubik’s Cube

The Rubik’s cube is a permutation group with well-
defined operations such as the rotations of the faces.
These rotations represent the group operation of per-
mutation.

And, because all relevant permutations of the
cube are reachable by face rotations, the rotations
are generators of the Rubik’s group.

We will be working with a 2× 2× 2 cube because
such cubes are simpler to work with. We are assum-

5



ing one of the cubies remains stationary throughout
manipulation.

The group can be represented in the system by a
generator group with

(define r (make-generator-group
rubiks-moves apply-perm))

The moves defined in rubiks-moves are the basic
face rotation permutations, each of which is given
one of the names f fi l li u ui. The permuta-
tions themselves are not illuminating to include here.

This representation is useful because we do not
actually require knowing all of the elements of the
group to solve the equation.

Thus, we can do such manipulations as

(map rubiks-move->name
(solve-to-element
r rubiks-identity
rubiks-moves (rubiks-randomized)))

;Value 11: (l f ui l fi u fi l fi u)

to solve a cube.
Or, to understand the solver better,

(map rubiks-move->name
(solve-to-element
r rubiks-identity
rubiks-moves
(apply-perm
(rubiks-name->move ’Ui)
(rubiks-name->move ’F))))

;Value 16: (fi u)

6.3 The Solver

The solver a breadth-first graph searcher. The
vertices of the graph are elements of the group,
and edges represent left-multiplying elements of the
group. Starting from the vertex a, we try edges ci

until we end up at b. The running time is roughly
exponential with respect to the length of the solution
sequence.

However, if we happen to know the group in-
verse (as in, the group inverse operation has been
tagged to the group), then there is a trick to quicken
the search. Two simultaneous breadth-first searches
are conducted from both a and b, left-multiplying
ci from a and right-multiplying c−1

i from b. When
the searches meet in the middle, we have a solution.
While still roughly exponential, the running time is

now with respect to half the length of the final solu-
tion sequence.

This double-sided search is necessary to handle
solving the Rubik’s cube. The maximum distance
between any two permutations on the 2× 2× 2 cube
is 14 moves. Only requiring searching a depth of 7 is
much more efficient.

The solver is also useful for determining
is-element? on generator groups. One course of
action taken by this threaded solver is to try to find
the elements of the group by generate-group. How-
ever, the group may be infinite, and so if the solver
can solve the equation a = c1 ◦ . . . ◦ ck for ci in the
set of generators, then a is in the group. There is
currently no way to determine whether an element is
not in a group of infinitely many elements.

(define g (make-generator-group ’(1) +))
(is-element? g 5)
;Value: #t

7 Group Algorithms

For group-theoretic manipulations, we include a num-
ber of basic group algorithms to compute various
structures related to groups, such as subgroups, con-
jugacy classes, and alternative representations, as the
Todd-Coxeter algorithm allows. In more difficult
problems related to classifying groups and comput-
ing groups given partial information, these are often
useful.

7.1 Basic Algorithms

Our toolkit includes basic algorithms for building up
new groups from old ones and computing certain el-
ementary group structures.

We implement product group and group genera-
tion from generators as abstractly as possible. The
product algorithm takes two groups and creates ele-
ments formed from every pairing of one element from
each group. It then associates with this a new group
operation, which applies the old group operations
separately to each component. This can be iterated
arbitrarily:

(product-group
(make-cyclic-group 2)
(make-cyclic-group 2))

; Value 1:
#(group ((1 1) (1 0) (0 1) (0 0))

6



#[compound-procedure 16])

(product-group
(make-cyclic-group 2)
(make-cyclic-group 2)
(make-cyclic-group 2))

; Value 2:
#(group ((1 (0 0)) (1 (0 1)) (1 (1 0))

(1 (1 1)) (0 (0 0)) (0 (0 1))
(0 (1 0)) (0 (1 1)))

#[compound-procedure 18])

It’s also interesting to test group predicates on
higher-level groups from the outputs of these proce-
dures.

(cyclic? (product-group
(make-symmetric-group 2)
(make-cyclic-group 2)))

;Value: #f

(cyclic? (product-group
(make-symmetric-group 2)
(make-cyclic-group 3)))

;Value: #t

The engine can also be given a group in the
form of generators. If all the group elements are ex-
plicitly needed, the (generate-group generators

operation ) procedure is used. This function per-
forms a breadth-first search to visit all vertices of
the corresponding Cayley graph. An optimization is
made to use combinations of generators as they are
found as generators to visit all vertices more quickly.

The procedure (group-elements G) for G which
are generator groups will use generate-group to find
the elements. If this procedure is able to return the
elements before other threads in the threaded solver,
the group data structure is modified and the elements
are stored in the structure so that future requests for
elements do not need to re-generate the group:

(define g (make-generator-group
’((1 2 3 0) (1 0 2 3))
apply-perm))

; Value 5:
#(generator-group ((1 2 3 0) (1 0 2 3))
#perm)

(group-elements g)
; Value 6:
((0 3 2 1) (2 0 3 1) (3 2 0 1) (1 0 3 2)

...
(2 3 1 0) (3 0 2 1) (0 2 1 3) (0 1 3 2)
(3 2 1 0) (2 1 0 3) (0 3 1 2) (2 0 1 3))

g
; Value 7:
#(group
((0 3 2 1) (2 0 3 1) (3 2 0 1) (1 0 3 2)

...
(2 3 1 0) (3 0 2 1) (0 2 1 3) (0 1 3 2)
(3 2 1 0) (2 1 0 3) (0 3 1 2) (2 0 1 3))
#perm)

where #perm stands in place of the cryptic
compound-procedure representation to make clear
that the operation of the group is apply-perm.

Other basic operations include calculating cen-
tralizers, conjugacy classes, and subgroups:

(define s3 (make-symmetric-group 3))
;Value 31: s3

(centralizer ’(1 2 0) s3)
;Value 32:
#(group ((0 1 2) (1 2 0) (2 0 1)) #perm)

(conjugacy-class ’(1 0 2) s3)
;Value 30: ((0 2 1) (2 1 0) (1 0 2))

(pp (subgroups s3))
(#(group ((0 1 2)) #perm)
#(group ((0 1 2) (0 2 1)) #perm)
#(group ((0 1 2) (1 0 2)) #perm)
#(group ((0 1 2) (1 2 0) (2 0 1)) #perm)
#(group ((0 1 2) (2 1 0)) #perm)
#(group ((0 1 2) (0 2 1) (1 0 2)

(1 2 0) (2 0 1) (2 1 0)) #perm))
;Unspecified return value

In addition to these, many more operations could
be added as needed and built up from previous ones.

7.2 Quotient Groups

Another fundamental way to construct new groups
from old is through the computation of quotient
groups. Given a group and a normal subgroup, our
procedure first constructs the cosets. This procedure
multiplies the first element of the subgroup by each
element of the group.

Since cosets partition the group, each time a new
element is found in this way, we have a new coset,
and the algorithm then multiplies the entirety of the

7



subgroup by this element and remembers them in a
hash table. This runs efficiently.

The quotient group procedure then performs a
similar computation; it multiplies the first element
of each coset by each element of the group to see how
the cosets are permuted. This permutation is de-
termined by tags assigned to the group by the coset
procedure. It finally takes the list of permutations
and returns it as a permutation group:

(quotient s3 (generate-group ’((1 2 0))
apply-perm))

;Value 35: #(group ((1 0) (0 1)) #perm)

This computes S3/C3, since C3 is a normal sub-
group of the symmetric group S3.

7.3 Todd-Coxeter Algorithm

The most powerful group-theoretic algorithm in-
cluded in the toolkit thing is the Todd-Coxeter al-
gorithm for coset enumeration. We use it as a con-
venient way for a user to input many types of groups
and a method of generating groups, potentially in
search methods.

A fundamental way to represent a group is
through generators and relations. The group is pre-
sented as a set of products that equal the identity.
A cyclic group, for instance, has one generator, with
the relation xn = 1. Every group can be written in
this way, and it often provides a simple, intuitive way
to describe groups. The tetrahedral group, describing
the symmetries of a tetrahedron, as another example,
has relations x3 = y2 = z2 = xyz = 1.

Although this is notationally compact, such a rep-
resentation is computationally difficult. The Todd-
Coxeter algorithm, however, is a simple and efficient
algorithm for converting a set of relations into a per-
mutation representation of the group, if it is finite.

We provide the algorithm with a set of relations
and the generators of an arbitrary subgroup. It then
numbers the cosets of this subgroup and analyzes how
the generators permute them. This gives a set of
permutations which represent the generators and can
be used to generate the entire group. The represen-
tation thus obtained is the permutation representa-
tion induced by the subgroup; passing in the trivial
subgroup yields the regular representation, which is
faithful.

The algorithm keeps track of three sets of tables:
the coset table, the relation tables, and the subgroup
tables. The coset table keeps track of the final an-
swer; it has a row for each coset, and a column for

each generator and its inverse. The entries cij is the
action of the generator j on the coset i. The table
for a relation has a column for each term in the prod-
uct; for instance, the relation x3 would have three
x columns. It has a row for each coset, which con-
tains the orbit of that coset under the action of the
columns. It contains the additional information that
the final coset must equal the initial, since the prod-
uct of all the elements of the relation is the identity.
Finally, there is a subgroup table for each generator
of the subgroup. It is similar to the relation table,
but it contains only one row for the coset equal to
the subgroup. The action of a subgroup generator on
the subgroup is trivial, so this gives additional infor-
mation.

Figure 1 is an example using the dihedral group
D3. We will use the subgroup 〈y〉 = C2. For simple
subgroups, the subgroup table is unnecessary, and in
this case we will omit it along with the coset table.

Thus, y = (2 3) and x = (1 2 3), written in cyclic
notation.

Note that we only need three cosets to completely
fill the tables, which follows from the fact that the in-
dex of C2 in D3 is three. The algorithm simply adds
new cosets and fills in as much of the table as possible
before adding more.

x x x
1 2 3 1
2 3 1 2
3 1 2 3

y y
1 1 1
2 3 2
3 2 3

y x y−1 x
1 1 2 3 1
2 3 1 1 2
3 2 3 2 3

Figure 1: Relations: x3 = y2 = yxy−1x = 1

7.4 Example

Using an extension to make generator relation input
simple for a person, an example of executing the al-
gorithm is

(tc ’("x^3" "y^2" "yxy^-1x") ’("y"))
;Value 37: ((0 2 1) (1 2 0))

8



The first permutation is y: it sends 0 to 0, 1 to 2,
and 2 to 1. The next is x: it sends 0 to 1, 1 to 2, and
2 to 0.

8 Many-dimensional Iteration

This part of the project (which falls under the long-
term basic research sub-team of our group) is referred
to as the multi-dimensional-iterator (MDI). Imagine
that we want to find a group with i elements and j
maximal order. Then one way to do it is to simply
iterate through all the possible values of i and j re-
spectively in such a manner that for any pair (i, j),
the program examines that pair after a finite num-
ber of computations. Such a search is traditionally
done using the following circular walk through the
first quadrant:

Figure 2: A basic two dimensional iteration

Of course in real problems we have constraints
to limit the space we are searching. Going with the
example above, the order of the group i must be
greater than or equal to the maximal order of the
group (i ≥ j). Now imagine that the user of our pro-
gram would like to search some n dimensional space,
and supplies us with a series of predicates that tell us
which areas to avoid. Now suppose that n is large,
say 10, 000, but the predicates prune out the vast ma-
jority of the search space. Then, our circular walking
approach fails because it is effectively going to be do-
ing a depth-first-search requiring back-tracking. Ef-
ficient back-tracking for DFS requires memoization,
and we clearly cannot afford to memoize in a high
dimensional space. We can imagine scenarios where
perhaps the space is a giant maze and this type of
approach becomes computationally intractable very

quickly. As illustrated in figure 3, we instead grow a
boundary starting at the origin that grows outward
wrapping around predicate regions (dark gray in the
figure). In fact we use two boundaries, a new bound-
ary (black) and a old boundary (light gray). The old
boundary prevents the new boundary from examining
locations it has already examined, and each iteration
the previous new boundary becomes the current old
boundary.

Figure 3: Boundary expansion with predicate regions

Suppose now that n = 10, 000. Then any point
in space has 310,000 − 1 neighbors (assuming in each
dimension we can move either forwards, backwards,
or stay put), a number that is computationally in-
tractable under almost any circumstances. Thus al-
most every traditional data-structure-oriented opera-
tion we can imagine has to be carefully re-examined,
since we cannot at any point afford to enumerate non-
trivial subsets of the neighbors of a point in space
without running out of memory or never finishing our
computation.

And so we study the following two problems:
given a point in space, if we have a series of pred-
icates, each of which takes as input some subset of
the position vector, how can we generate and store
all of the different valid neighbors to which we can
walk. Specifically, we are interested in the fact that
we can use one predicate’s abilities to prune the set
of valid neighbors to reduce the number of neigh-
boring positions another predicate must examine.
Secondly, we are interested in solving a network-
dynamic-programming problem, that is, we would
like to share the computations that a point does
with it’s neighbors since a non-trivial number of their

9



neighborhoods overlap. In this paper we will spend a
lot of time developing the first problem before com-
ing to the unfortunate conclusion that we are simply
trying to solve 3-SAT in disguise (dooming us to fail-
ure since 3-SAT is NP-Complete and it is likely that
P 6= NP ). We will primarily be using the Trie data
structure created by Fredkin.

Figure 4: A trie structure storing four sequences

Initially our point may look something like the
following:〈[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]
,
[

a
b
c

]〉
where

[
a
b
c

]
may be expressed using the ambivalence

operator as (amb a b c).

Figure 5: Fusing multiple trie structures together

We are given a set of predicates P = {p1, . . . , pn},
and what we will call predicate-targets. We represent
the valid strings of variables that each predicate ac-
cepts by a trie-structure. For example, in figure 5
we have three predicates. Variables are denoted by
the solid black blocks. Note that some of the vari-
ables are used by more than one predicate. Now, the
key operation is to fuse these three trie-structures to-
gether into a larger trie-structure. First however, we
introduce the canteen data structure. The canteen
data-structure is effectively a pair, with the first el-
ement being a list of variables that a trie-structure
is covering, and the second being the trie-structure.
Our code base has the following major functions de-
scribed briefly. While they may seem not-too-difficult
to code, note that we must code every one of them to
be nearly algorithmically optimal or the code simply
will not work.

The procedure (Create-Trie list-of-points)
creates a Trie data structure given a list of points. For
example in figure 4, the strings on the right would fed
in, and a trie-structure like the one on the left would
be output.

The procedure (Create-Canteen variables
list-of-values-for-each-variable) creates a
canteen.

In the procedure (get-sub-canteen
desired-vars canteen), you basically specify a
subset of variables (desired-vars) and it extracts
from the provided canteen a new canteen that has a
trie structure which only covers the desired variables.
This procedure is really hard to code in a manner
that doesn’t result in combinatorical explosions.

The procedure (blockerize alpha) takes an
alpha of the form:

((a baz1) (a baz2) (a baz3) (b baz4) (b baz5))

into

((a (baz1 baz2 baz3)) (b (baz4 baz5)))

(block-matcher blocksA blocksB operator)
is a procedure which, given two lists of blocks, finds
all matching blocks (by header) and applies operator
on them, returning the list of results of the operator
calls.

The procedure (block-multiply blockA
blockB varsA varsB) multiplies all the elements
of blockA with all the elements of blockB.

(Join-Canteens canteenA canteenB predicateA)
joins two canteens together across their common

10



variables in an algorithmically near-optimal man-
ner. Note that canteenA is initially all the pos-
sible values that can be fed into predicateA, but
canteenB represents all the possible values that re-
turned true for predicateB, and thus canteenB is
used to prune the values of canteenA before they are
fed into predicateA.

The actual procedure used to prune the points
is (prune-points init-list predicate-pairs).
The end result is algorithmic sub-optimality because
there are too many combinatorical explosions pre-
venting better than exponential performance. We
realized that this is just a really bad way to solve
Circuit Satisfiability. Note, however, that this is try-
ing to solve 3-SAT without knowing what the predi-
cates actually are (as in, it treats the predicates like
blackboxes, whereas 3-SAT knows exactly what the
predicates are).

Here are some examples of the system:

(define (pred1 x y z)
(<= (+ x y z) 5))

(define (pred2 x y z)
(<= (+ (* x x) (* y y) (* z z)) 10))

(define myInitList
’((1 2 3 4) (1 2 3 4) (1 2 3 4)))

(pp (prune-points
myInitList
(list (cons (list 0 1 2)

(list pred1)))))
((0 1 2)
((1 ((1 ((1)

(2)
(3)))

(2 ((1)
(2)))

(3 ((1)))))
(2 ((1 ((1)

(2)))
(2 ((1)))))))

The interpretation of the result is that the first en-
try are the variables represented, which are x, y, and
z in this case. The second part is the trie struc-
ture. This particular trie can be expanded out to
{111, 112, 113, 121, 122, 131, 211, 212, 221}

Here is another example, testing two predicates,
both operating on the same set of variables.

(pp (prune-points

myInitList
(list (cons (list 0 1 2)

(list pred1))
(cons (list 0 1 2)

(list pred2)))))
((0 1 2)
((1 ((1 ((1)

(2)))
(2 ((1)

(2)))))
(2 ((1 ((1)

(2)))))))

A second example is testing two predicates as be-
fore, but they now only share two variable in com-
mon.

(define myInitList2
’((1 2 3 4)

(1 2 3 4)
(1 2 3 4)
(1 2 3 4)))

(pp (prune-points
myInitList2
(list (cons (list 0 1 2)

(list pred1))
(cons (list 1 2 3)

(list pred2)))))
((1 2 3 4)
((1 ((1 ((1 ((1)

(2)))
(2 ((1)

(2)))))
(2 ((1 ((1)

(2)))))))
(2 ((1 ((1 ((1)

(2)))
(2 ((1)

(2)))))
(2 ((1 ((1)

(2)))))))
(3 ((1 ((1 ((1)

(2)))))))))

Something interesting to note is that this is not
exactly circuit-satisfiability since the prune points
predicates given are treated like black boxes, whereas
in circuit-satisfiability the predicates are transparent.
However, as we saw in the second example, it is not
necessary that the traditional ordering is the most
compact way to store trie structures after they are

11



fused together. However, it is not clear how to do the
reordering in less than exponential time.

The second part of the system, solving the net-
work dynamic programming, eluded us for the follow-
ing reason: suppose we have point A with a neighbor
point B. Suppose we now prune the valid neighbors
of A, and would like to share this information with
B. However, as we saw above, it is easy to concisely
represent all of B’s points using the amb operator.
However, once we start using just trie data struc-
tures, what used to take just a few words in memory
now requires a huge amount of space. Thus, it is clear
that some type of combinatorical data structure is re-
quired for representing the set of valid neighbors for
a point in space.

Primarily, since Scheme doesn’t give unrestricted
access to pointers, it is difficult to do high-
performance programming, or even very tricky pro-
gramming in which data structures have to be ma-
nipulated very carefully and very precisely with al-
most no excess memory requirements allowed. An-
other problem with this part of the project that we
realized much later is that the number of dimensions
is not dynamic, which makes it difficult to encode a
great number of problems.

Once we solve the second part of the project (the
network-dynamic-programming problem), we would
be able to solve much more complex analogues to the
following types of problems: Suppose we have a group
G such that 6 ≤ o(G) ≤ 10 with elements a1, . . . , ak

for 1 ≤ k ≤ 10 such that aγ0
1 = aγ1

2 = ... = aγk

k = 1.
Then find all valid sets of values for γ0, γ1, ..., γk.

Encoded in predicates,

(define (is-group-valid?
. list-of-gamma-values)

(define (get-TC-format
remaining-gamma-vals
cur-variable-index)

(if (null? remaining-gamma-vals)
’()
(cons
(make-list
(car remaining-gamma-vals)
cur-variable-index)

(get-TC-format
(cdr remaining-gamma-vals)
(+ 1 cur-variable-index)))))

; using todd-coxeter which fails
; via time-out (and then returns #f)
(todd-cox (get-TC-format

list-of-gamma-values

0)))

; order should be >= than the number of
; non-zero gamma-vals and the gamma-values
; should be sorted (descending) so we don’t
; solve the same problem twice.
(define (valid-gamma-values?

order gamma-vals)
(and (>= order

(reduce (lambda (x y)
(if (> y 0)

(+ x 1)
x))

0 gamma-vals)
(< 0

(reduce (lambda (x y)
(list
y
(* (cadr x)

(if (> (car x) y)
0
y))))

(list (car gamma-vals) 1)
gamma-vals)))))

(let ((starting-point
’(1 1 1 1 1 1 1 1 1 1 1))

(pred-pairs
(list (list

’(1 2 3 4 5 6 7 8 9 10)
is-group-valid?)

(list
’(0 1 2 3 4 5 6 7 8 9 10)
valid-gamma-values?))))

(MDI starting-point pred-pairs))

which would return all sets of values of the o(G) and
γi that satisfy our problem in a reasonably efficient
manner.

9 Extensions

The group system can be used to implement higher-
order objects which depend on groups and to imple-
ment other interesting procedures.

9.1 Fields

Our system has limited support of fields. A field F is
a set of elements with two associated binary opera-
tors which we will denote by + and ·. The + operator
forms an abelian group (a group with the additional
property of commutativity) with the elements in F ,

12



and the · operator forms an abelian group with the
elements in F less the identity of the + group. Also,
the distributive law of · over + must hold.

Thus, we can create a predicate to check a field:

(defsolver field?
(lambda (f)
(and (abelian? (field-add-group f))

(abelian? (field-prod-group f))
(distributive? f))))

The procedures field-add-group and
field-prod-group return the groups associated with
+ and ·, respectively.

9.2 Group Naming

An unfinished system is the naming of a group by to
which of Cn, Sn, Dn, etc. the group is isomorphic.

It can currently identify cyclic groups. It is hoped
that the procedure find-generators will be able to

aid in identification. This procedure finds the min-
imal set of elements required to generate a given
group,

(name-group (make-cyclic-group 4))
;Value 11: (cyclic 4)

(name-group (make-generator-group
’((1 2 3 0))
apply-perm))

;Value 12: (cyclic 4)

(name-group (make-generator-group
’((2 3 0 1))
apply-perm))

;Value 13: (cyclic 2)

It is not yet obvious how to handle being able to
name a group multiple things. For instance, a group
of two elements may be isomorphic to both S2 and
C2.

References

[1] Rowland, T., and Weisstein, E. W. Group. MathWorld, 2009.

13


