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Abstract

The basic theory of iteration graphs are explained, and quadratic iteration graphs of the
form f(x) = x2 + c modulo prime p are classified for c = 0. As an application, the structure
of the iteration graph for f(x) = x2 is used to explain the operation of the Tonelli square root
algorithm.

1 Introduction

The motivation for this paper is an attempt to understand the problem of computing square roots
modulo a prime in polynomial time. Finding a deterministic polynomial time algorithm (with
respect to lg p) for this is currently an open problem, and the only algorithms which have been
proven to run in polynomial time are randomized [Bach 155]. An example is the Tonelli square
root algorithm, which uses a quadratic non-residue (that is, an integer which is not a square of
anything modulo p) to transform the input into something which has a square root that is easy
to compute. However, there are no known deterministic polynomial time algorithms which can
generate quadratic nonresidues, so the Tonelli algorithm transforms one unsolved problem into
another.

The distribution of quadratic nonresidues is favorable: exactly half of the numbers in the set
{1, 2, . . . , p−1} are quadratic nonresidues, so we only expect to have to randomly select two elements
from this set before finding a quadratic nonresidue.

The placement of the quadratic nonresidues, on the other hand, is more difficult to understand.
With basic number theory, it can be shown that there must exist a quadratic nonresidue within
the first 1 +

√
p positive integers [Niven, Theorem 3.9], but this only suggests an exponential

time deterministic algorithm. However, assuming the Extended Riemann Hypothesis, which so far
has eluded proof, this bound has been brought to O(lg2 p) [Ankeny], which gives a way to find a
quadratic nonresidue is deterministic polynomial time.

One way to attempt to understand both the problem of finding square roots and the problem of
finding quadratic nonresidues is to study the function f(x) = x2 modulo a prime, since quadratic
nonresidues are those y such that f(x) 6≡ y (mod p) for all x. This suggests looking at the iteration
graph for f , which is a graph whose vertices are the set of integers modulo p, and an edge −→xy exists
in the graph if and only if f(x) ≡ y (mod p).

There is a lot of structure in this type graph, and some of these iteration graphs modulo p are
amenable to classification. And, it turns out that the structure of this graph reflects the principle
behind the Tonelli algorithm.
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In this paper, we will describe iteration graphs in more detail, restrict our attention to quadratic
iteration graphs where f is of the form f(x) = x2 + c, and classify some of such graphs. As an
application, though, we will use these results to understand the Tonelli algorithm for square roots
as an aid to gain intuition for the difficulties in determining quadratic nonresidues.

This discussion will require a better grounding in basic group theory and number theory than
was covered in 18.310, so, for the benefit of the reader, we will review this background material.

2 Background material

In this section we will give an overview of background material from algebra and elementary number
theory which we will use for the discussion of iteration graphs. We are covering this material in
some depth because, for example, we need to be comfortable with the cosets of a group when
we discuss the Tonelli algorithm, and we need a generalized version of Fermat’s little theorem to
classify certain iteration graphs.

We will not be following any book in particular, but the reader is invited to read [Artin] and
[Niven] for more detail.

2.1 Group theory

A group G is a set with an associative binary operation · ∗ · : G × G → G which has an identity
element 1 that satisfies 1 ∗ a = a ∗ 1 = a for all a ∈ G, and which has inverses: for every element
a ∈ G there is a b ∈ G such that a ∗ b = b ∗ a = 1. When we think of the binary operation as
being a kind of multiplication, we use juxtaposition, writing ab instead of a ∗ b, the symbol 1 for
the identity element, and a−1 for the inverse of a. In additive notation, where we use + for the
operation, we instead use the symbol 0 for the identity and write −a for the inverse of a, which
satisfy a + 0 = 0 + a = a and a + (−a) = 0, respectively.

The order of G is the number of elements in G. In this paper, we will assume groups have finite
order unless otherwise specified. We will also be using both additive and multiplicative groups; the
notation we use will be clear from context.

A subgroup H of a group G is a subset of G which itself is a group when the binary operation
of G is restricted to H (if such a restriction is possible, then we say H is closed under the binary
operation). The cyclic subgroup generated by some element x ∈ G, denoted by 〈x〉, is all powers
of x: . . . , x−2, x−1, 1, x1, x2, . . ., which clearly is a group. The order of an element x ∈ G is the
smallest positive integer ` such that x` = 1. This terminology is justified by the following lemma:

Lemma 1. The order of an element x of a group G is equal to the order of 〈x〉.

Proof. First, we will prove the order of x exists. Since G is finite, the sequence 1, x, x2, . . . must
have at least one pair of terms which are equal. That is, there are integers s, t with s > t such
that xs = xt. Since G is a group, xs−t = 1, and since s− t is a positive integer, a smallest positive
integer ` must exist. Now, xi = xi−`x` = xi−` and xi = xi+`x−` = xi+`, so for any integer i there
is a 0 ≤ j < ` such that xi = xj , so 〈x〉 = {1, x2, x3, . . . , x`−1}.

Let H be a subgroup of a group G. Given a ∈ G, a coset aH is the set

aH = {ah | h ∈ H}.
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Lemma 2. Let H be a subgroup of a group G. Each coset of H has the same order.

Proof. Since every element a ∈ G has an inverse, the map on G defined by x 7→ ax is a bijection
with inverse x 7→ a−1x. Thus, H is in bijective correspondence with aH, and so |H| = |aH| for all
a ∈ G. Therefore, for any a, b ∈ G, |aH| = |H| = |bH|.

A partition A of a set X is a collection of subsets such that ∪A∈AA = X and all of the sets in
the partition are disjoint. For instance, {{1, 2}, {3}} is a partition of the set {1, 2, 3}.

Lemma 3. Let H be a subgroup of a group G. Then the cosets of H partition G.

Proof. First, we see every element a of G is contained in some coset of H, in particular a ∈ aH
since 1 ∈ H and a = a1. Next, we will show if, for a, b ∈ H, that if aH and bH have a nonempty
intersection, then aH = bH. Let x ∈ aH ∩ bH. Then x = ah1 = bh2, which means a = bh2h

−1
1 .

Given an arbitrary element ah3 ∈ H, ah3 = (bh2h
−1
1 )h3 = b(h2h

−1
1 h3). Since H is a group,

h2h
−1
1 h3 ∈ H, so ah3 ∈ bH. Since ah3 was arbitrary, aH ⊂ bH. By symmetry, aH ⊃ bH, so

aH = bH. Therefore, the union of the cosets of H is all of G, and the intersection of any two
distinct cosets of H is nonempty, so the cosets of H partition G.

These two lemmas prove the following theorem.

Theorem 4 (Counting theorem). Let k be the number of distinct cosets of a subgroup H of a group
G. Then

k |H| = |G| .

We call k the index of H in G.

Corollary 5 (Lagrange’s theorem). If H is a subgroup of a group G, then the order of H divides
the order of G.

This corollary gives a convenient number n so that an = 1 for all a ∈ G:

Corollary 6. Let G be a group and n its order. Then an = 1 for all a ∈ G.

Proof. Let a ∈ G. By Lagrange’s theorem, the order of 〈a〉 divides the order of G, and since the
order of 〈a〉 equals the order of a, the order of a divides the order of G. Thus, k` = n for some
integer k. We see an = ak` = (a`)k = 1k = 1.

2.2 Elementary number theory

This section reviews notions from elementary number theory. Some of this material was mentioned
in 18.310. However, our treatment of the material is different enough so the author thought it
would be profitable to mention it again.

If x, y, and n are integers, then x and y are said to be congruent modulo n if n divides x−y.
This relation is denoted by x ≡ y (mod n).

We will show congruence is an equivalence relation. This relation is reflexive since 0 is divisible
by any n, so n divides x − x. This relation is also transitive since if x ≡ y and y ≡ z modulo
n, then k1n = x − y and k2n = y − z for some integers k1 and k2, so y = x − k1n, which means
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k2n = (x − k1n) − z, thus (k1 + k2)n = x − z. Therefore, x ≡ z (mod n). Next, we will show
congruency respects addition and multiplication.

If x1 ≡ x2 and y1 ≡ y2 modulo n, then x1 + y1 ≡ x2 + y2 modulo n. This is because, by
the hypotheses, kxn = x1 − x2 and kyn = y1 − y2 for some integers kx, ky, so (kx + ky)n =
(x1 + y1)− (x2 + y2), and therefore x1 + y2 ≡ x2 + y2 (mod n).

Also, if x1 ≡ x2 and y1 ≡ y2 modulo n, then x1y1 ≡ x2y2 (mod n). By the hypotheses, there are
integers kx, ky so kxn = x1−x2 and kyn = y1−y2. Then (x1ky+y2kx)n = x1(y1−y2)+y2(x1−x2) =
x1y1 − x2y2, and thus x1y1 ≡ x2y2 (mod n).

We can take this equivalence relation of congruence and find representative elements so that
it is easier to work with. Let Zn = {0, 1, 2, . . . , n − 1}. We claim every integer x is congruent to
exactly one element of Zn modulo n. By the division algorithm, x = qn + r uniquely for some
integers q and r where 0 ≤ r < n. Thus, qn = x − r, and so x ≡ r (mod n). Therefore x is
congruent to some unique r ∈ Zn.

The previous three results imply that we can let Zn inherit the operations of addition and
multiplication in Z by taking the result of the operation and finding the unique element of Zn

to which it is congruent. This means Zn has associative and commutative addition and binary
operations which respect the distributive law, and which have identities 0 and 1, respectively, and
addition has inverses.

Under some circumstances, multiplication also has inverses. By the Euclidean algorithm for
computing the greatest common denominator of two integers x and y, there exist integers s and t
so that gcd(x, y) = sx + ty. We will use this fact to prove the following lemma:

Lemma 7. An element a ∈ Zn has a multiplicative inverse if and only if gcd(a, n) = 1.

Proof. Assume gcd(a, n) = 1. Then there are integers s, t so that sa + tn = 1, which means
tn = 1− sa, so 1 ≡ sa (mod n). Therefore s is the multiplicative inverse of a.

Now, assume a ∈ Zn has a multiplicative inverse s ∈ Zn. Then as ≡ 1 (mod n), which implies
as−1 = kn for some integer k, and so 1 = as−kn. Since the greatest common denominator of two
numbers divides any integer linear combination of the numbers (a fact utilized by the Euclidean
algorithm), gcd(a, n) = 1.

This lemma justifies the definition of the multiplicative group modulo n to be all of the
elements a of Zn such that gcd(a, n) = 1. We denote this set by Z∗

n. It is clear that this set is
indeed a group as multiplication is associative, there is an identity 1, multiplication is closed since,
if both gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1, and every element has an inverse:
gcd(a, n) = 1 means 1 = sa + tn for some integers s, t, so 1 = as + tn, thus gcd(s, n) = 1, where s
is the inverse of a modulo n, and this has a representative in Z∗

n.
The order of this group is denoted by ϕ(n) = |Z∗

n|. It is called the totient function. For prime
numbers p, ϕ(p) = p− 1 because every element i ∈ Zp but i = 0 has gcd(i, p) = 1. Thus, Z∗

p is Zp

without 0.
The following theorem is a special case of Corollary 6, and a generalization of Fermat’s little

theorem which appeared in class:

Theorem 8 (Euler’s theorem). For any x ∈ Z∗
n,

xϕ(n) ≡ 1 (mod n).

4



We will run into the need to solve equations of the form ax ≡ b (mod n). These linear equations
in general do not have a unique solution.

Lemma 9. Let a, b, n be integers with n positive. If gcd(a, n) divides b, then ax ≡ b (mod n) has
exactly gcd(a, n) solutions x. Otherwise, the equation has no solutions.

Proof. Let g = gcd(a, n). Assume g divides b. The congruence ax ≡ b (mod n) is equivalent to
kn = ax− b for some integer k. Since g divides a, b, and n, we have kn

g = a
gx− b

g . Thus,

a

g
x ≡ b

g
(mod

n

g
).

Now, we note that a
g has no common divisors with n since the common divisors between a and

n have been removed from a, so gcd(a
g , n) = 1. This implies there are integers c and d such that

1 = ca
g + dn. Thus, 1 ≡ ca

g (mod n
g ) since dn is divisible by n

g . Therefore c is an inverse so that

x ≡ bc

g
(mod

n

g
),

and this implies x = bc
g + mn

g for some integer m. Since ca
g = 1− dn, first multiplying by a,

ax =
abc

g
+

amn

g
= b(1− dn) +

amn

g
.

Because g divides a, n divides n
g . Consequentially, ax ≡ b (mod n) no matter the choice of m. It is

clear that 0 ≤ m < g represents all incongruous solutions to the equation, so there are g solutions
to the equation.

Now, assume g does not divide b. Since g divides n, any solutions to ax ≡ b (mod n) will also be
solutions to ax ≡ b (mod g). We note that b 6≡ 0 (mod g), but, since g divides a, ax ≡ 0 (mod g),
so 0 ≡ b (mod g), which is a contradiction. Thus, there are no solutions to the equation.

2.2.1 Primitive roots

We will leave the following theorem without proof since it requires some more advanced techniques.
The reader is invited to read [Artin, Theorem 15.7.3(c)], which uses the structure theorem for
abelian groups [Artin, Theorem 14.7.3].

Theorem 10. The multiplicative group Z∗
n is cyclic. In other words, there exists an element ω ∈ Z∗

n

such that for every x ∈ Z∗
n, there is an integer i so x ≡ ωi (mod n).

This ω is called a primitive root modulo n. As an example, 3 is a primitive root modulo 7:

i 1 2 3 4 5 6
3i 3 2 6 4 5 1

Theorem 11. Let d be a divisor of the order of Z∗
p, where p is prime. The number of elements of

order d in Z∗
p is ϕ(d).
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Proof. Let ω be a primitive root modulo p and let d be a divisor of Z∗
p. If x is such that xd ≡ 1

(mod p), then, since x ≡ ω` (mod p) for some 0 ≤ ` < p− 1, we have ωd` ≡ 1 (mod p). By Euler’s
theorem, then d` ≡ 0 (mod p− 1). Because d divides p− 1, we have that ` is divisible by p−1

d . So,
` = k p−1

d for some 0 ≤ k < d, since 0 ≤ ` < p− 1. Assume that gcd(k, d) 6= 1, and let d′ = d
gcd(k,d) ,

which means d′ < d. We see that

xd′ ≡ ω`d′ ≡ ω
kd′(p−1)

d ≡ ω
kd(p−1)
gcd(k,d)d ≡

(
ωp−1

) k
gcd(k,d) (mod p).

And, because k is divisible by gcd(k, d), we conclude that xd′ ≡ 1 (mod p), contradicting the fact
that d is the order of x. This shows there are at most ϕ(d) elements of order d.

Now, let 0 ≤ k < d be such that gcd(k, d) = 1, and assume there is a 0 < d′ < d such that
xd′ ≡ 1 (mod p). Then, `d ≡ `d′ ≡ 0 (mod p − 1). Since ` = k p−1

d , we have k(p − 1) ≡ kd′(p−1)
d

(mod p−1). Because k(p−1) ≡ 0 (mod p−1), and gcd(k, d) = 1, we have d′(p−1)
d ≡ 0 (mod p−1).

But, d′ < d, so this is an impossibility. Thus, there is no such d′. This concludes the proof that
there are exactly ϕ(d) elements of order d.

2.2.2 Quadratic residues

A quadratic residue x modulo n is an element such that there is a y so x ≡ y2 (mod n). From
this point forward, we will assume that n = p for some prime p.

Detecting whether x is a quadratic residue modulo prime p, where p > 2, involves the following
observation. Let ω be a primitive root modulo p. Then there is an integer i so that ωi ≡ x (mod p).
If i is even, i = 2k for some k, so x

p−1
2 ≡ ω

i(p−1)
2 ≡ ωk(p−1) ≡ (ωp−1)k ≡ 1 (mod p). However, if i

is odd, then i = 2k + 1 for some k, which means x
p−1
2 ≡ ω

i(p−1)
2 ≡ ωk(p−1)+ p−1

2 ≡ ω
p−1
2 (mod p).

But, since p−1
2 < p− 1, this is not congruent to 1 modulo p. This proves the following theorem:

Theorem 12. Let p > 2 be prime and x ∈ Z∗
p. Then x is a quadratic residue if and only if x

p−1
2 ≡ 1

(mod p).

Like linear equations in Lemma 9, we will have the need to know how many solutions to x2 ≡ c
(mod p) there are, for some integer c. If p = 2, then only 02 = 0 and 12 = 1, so we may assume
p > 2.

Lemma 13. Let p > 2 be prime and c ∈ Zp. Then, the number of solutions to x2 ≡ c (mod p) is

• zero if c is not a quadratic residue,

• one if c = 0,

• and two if c is a quadratic residue.

Proof. If c is not a quadratic residue, then there are zero solutions by definition.
If c = 0, then we are trying to find an element so x2 ≡ 0 (mod p), which is to say, find an

integer x so that p divides x2. Assume x is such that p divides x2. Then, since p is prime (which
means if p divides ab then either p divides a or p divides b), p divides x. Thus x ≡ 0 (mod p). This
gives exactly one solution.
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On the other hand, if c is a quadratic residue, then we have seen that c ≡ ω2k (mod p) for some
integer k, where ω is a primitive root modulo p. Let x be an arbitrary element of Z∗

p, thus x ≡ ωi

(mod p) for some integer i. Because x2 ≡ c (mod p), x2 ≡ ω2i ≡ ω2k (mod p). Since ωp−1 ≡ 1
(mod p), and since this is the smallest positive exponent such that this is true, this equation is
equivalent to 2i ≡ 2k (mod p − 1). By lemma 9, since 2 divides 2k, and gcd(2, p − 1) = 2, there
are exactly two solutions i, which results in exactly two solutions x.

3 Iteration graphs

Examining an iteration graph for a function f : V → V which maps a set V into itself is a
way to study the behavior of iterative application of the function. That is, an iteration graph
simultaneously shows the shape of the sequences x, f(x), f(f(x)), . . . , f (n)(x), . . ., for all x ∈ V .

Definition 14. The iteration graph of a function f : V → V is a directed graph G which allows
self-loops, with V as its set of vertices, and, for all a, b ∈ V , G has edge

−→
ab if and only if f(a) = b.

For the purpose of this paper, we will restrict our attention to sets V with finitely many elements
as we will generally be looking at V = Zp.

A walk on a graph G is a sequence of vertices x1, x2, . . . such that −−−−→xixi+1 is an edge in G for
every i.

Because f is a function, a basic property of iteration graphs is that every vertex has exactly
one out-edge. We see, then, that walks in G and iteration sequences of f are equivalent concepts:
a walk of length n starting from x ∈ V gives a unique iteration sequence x, f(x), . . . , f (n)(x), and
there is only one walk which follows the elements of this iteration sequence as each vertex has
exactly one out-edge.

It is clear that there is an infinite walk starting from every x ∈ V , namely

x, f(x), . . . , f (n)(x), . . . ,

and, since V has finitely many elements, this walk cannot continue visiting unvisited vertices forever,
so there are integers n, m with n < m so that f (n)(x) = f (m)(x). Since each vertex has exactly
one out-edge, it is clear that there is some integer s > 0 such that f (n)(x) = f (n+s)(x). Thus, the
infinite walk starting from any vertex in G will enter a cycle. This justifies the following definitions:

Definition 15. A vertex x in an iteration graph G is called cyclic if f (m)(x) = x for some
positive integer m, and the smallest such m is called the period of x. If x is cyclic, the set
{x, f(x), . . . , f (n)(x), . . .} is called a cycle of G, and the period of a cycle is its cardinality.

By the equivalence of walks and iteration sequences, the period of a cyclic element x and the
period of its corresponding cycle are equal. Also, every element of this cycle necessarily generates
the same cycle, so all elements of a cycle have the same period.

Definition 16. The preperiod of a vertex x in an iteration graph G is the minimal non-negative
integer m such that f (m)(x) is cyclic.

If x is cyclic, then the preperiod is zero, and if x isn’t cyclic, then the preperiod is a positive
integer.

7



The trees of an iteration graph G are the disconnected subgraphs after removing cyclic vertices.
Since each vertex has exactly one out-edge, each tree is attached to exactly one vertex of some cycle.

The following is an example of an iteration graph and its corresponding function f on the set
{1, . . . , 9}:

1

2

3

4

5

6

7

8

9

x 1 2 3 4 5 6 7 8 9
f(x) 2 1 1 3 2 3 5 1 2

Elements 1 and 2 are cyclic of period two, and they form a cycle. The preperiod of 7 is two,
and the preperiod of 5 is one. The trees of this iteration graph are the subgraphs with the vertices
{3, 4, 6}, {8}, {9}, and {5, 7}.

3.1 Quadratic iteration graphs

A quadratic iteration graph is an iteration graph generated by a quadratic function f(x) =
ax2 + bx + c on Zp for prime p, but we will restrict our attention to f of the form f(x) = x2 + c.

Basic properties of these graphs are that each vertex y ∈ Zp has zero, one, or two in-edges,
since there is an edge −→xy if and only if f(x) = y, which is equivalent to x2 ≡ y − c (mod p), and
the number of in-edges follows from Theorem 12 and Lemma 13:

• Exactly one vertex has only one in-edge;

• p−1
2 vertices have no in-edges;

• And p−1
2 edges have two in-edges.

It turns out that there is very regular structure when c = 0 or c = −2, and for other c, the
graphs experimentally appear random in general.

A non-rigorous justification for this is the following. Let us take the quadratic map x 7→ x2 + c
to be over C instead of Zp, as it is also a field. If c = 0, then points on the unit disc are mapped
into the unit disc, points outside are mapped to points with larger magnitude, and points inside
are mapped to points with lesser magnitude. Thus, the unit disc is the set of points which do not
diverge after iteration by the map. If we instead take c = −2, then real points a so −2 ≤ a ≤ 2 are
mapped back into this line segment. Points off this line segment are mapped farther away from the
line segment, and so iteration diverges. However, if c is neither of these, then the situation is much
more complicated. The set of points for which the iteration does not diverge is a kind of Julia set.
For almost every c not equal to −2 or 0, this set is a fractal (and it is an open question if every
such c is a fractal) [Weisstein].
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3.1.1 Classification of quadratic iteration graphs when c = 0

To classify these graphs, we will describe the structure of the cycles and of the trees. For the
following, we assume p is a prime integer greater than 3, for if p = 2 the graph is very simple: two
vertices, each with a self loop. Our main theorem is the following:

Theorem 17. Let p ≥ 3 be a prime number and f(x) = x2, and let Q and ` be so p − 1 = 2`Q
with Q odd. The iteration graph G for f on Zp has

• a self loop at 0;

• for each divisor d of Q, ϕ(d)
n cycles with period n, where n is the order of 2 modulo d (that

is, the minimal integer n such that 2n ≡ 1 (mod d));

• for each nonzero cyclic element x, there is one complete binary tree of ` levels attached to x.

A corollary to this is that the number of cyclic elements is Q. For, let x be the number of
cyclic elements. There is a tree of ` levels attached to each cyclic element, and each tree has 2` − 1
elements. We then have p− 1 = (2` − 1)x + x = 2`x, and therefore x = Q.

Before proving the theorem, we will look at some example graphs to see that it makes sense.
Figure 1 has iteration graphs for primes 7, 17, 19, and 601. By the main theorem, we see that each
has a self loop at zero. We can continue the analysis:

• 7− 1 = 21 · 3. So we expect trees of one level attached to each nonzero cyclic element, which
is what we see. The divisors of 3 are 1 and 3. The order of 2 modulo these divisors is 1 and
2, respectively. Thus, there is ϕ(1)/1 = 1 cycles of period 1 and ϕ(3)/2 = 1 cycle of period 2.

• 17 − 1 = 24 · 1. We expect trees with 4 levels. Since only 1 divides 1, there is ϕ(1)/1 = 1
cycle of period 1.

• 19− 1 = 21 · 9. The trees in this case have only one level each. The divisors of 9 are 1, 3, and
9, and the order of two in each case is 1, 2, and 6, respectively. This gives ϕ(1)/1 = 1 cycle
of period 1, ϕ(3)/2 = 1 cycle of period 2, and ϕ(9)/6 = 1 cycle of period 6.

• 601 = 23 · 75. Thus, the trees have three levels each. We can construct a table to aid in the
computation:

(divisor of 75) d 1 3 5 15 25 75
(order of 2 modulo d) i 1 2 4 4 20 20

ϕ(d)/i 1 1 1 2 1 2

Thus, there is one cycle of period 1, one cycle of period 2, one cycle of period 4, two more
cycles of period 4, one cycle of period 20, and two more cycles of period 20.

Note that different divisors may give cycles of the same order. For instance, there is a multiplicity
of period 20 cycles when p = 601. In general, if one were expecting a cycle of order ϕ(d) for some
divisor d, the cycle may “split” depending on the order of 2 modulo d.

We now prove the theorem.
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Figure 1: Iteration graphs for f(x) = x2 with various moduli.
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Proof. We see 02 = 0, so there is a self loop at 0. Since, modulo the prime p, x2 = 0 only has the
solution x = 0, the self loop at 0 is disconnected from the rest of the iteration graph. Thus, we
may restrict our attention to Z∗

p, which is Zp without 0.
The following lemma will aid in determining which elements are cyclic.

Lemma 18. Let x be an element of Z∗
p with order d. If d is odd, then x2 has order d. Otherwise,

if d is even, then x2 has order d
2 .

Proof. Let x ∈ Z∗
p be an element with order d. Looking at the exponents of elements in 〈x〉, we see

that xi ≡ xj (mod p) for integers i, j if and only if i ≡ j (mod d), since xd ≡ 1 (mod p) gives us a
congruence relation on exponents. We see that

〈
x2

〉
is a subgroup of 〈x〉, and elements of

〈
x2

〉
are

of the form x2i for some integer i. Thus, the element x of 〈x〉 is an element of
〈
x2

〉
if and only if

1 ≡ 2j (mod d) for some integer j.
If d is odd, then gcd(2, d) = 1, which divides 1. Thus, by lemma 9, then there is exactly one j

which satisfies this, so 〈x〉 =
〈
x2

〉
, and therefore x2 has degree d.

However, if d is even, gcd(2, d) = 2, which does not divide 1, and by the same lemma, there are
no solutions, so x 6∈

〈
x2

〉
. Since x2j ∈

〈
x2

〉
for all integers j, we can conclude the order of

〈
x2

〉
is

half the order of 〈x〉.

From this lemma, it follows that the iteration sequence of f on an element x of even order will
stabilize to elements of only odd order, so the sequence never returns to x, and thus x is not cyclic,
and instead is a vertex of the trees of G.

Lemma 19. An element x ∈ Z∗
p is cyclic if and only if its order d divides Q.

Proof. Assume x ∈ Z∗
p has an order d which divides Q. Since d is odd, 2 is an element of Z∗

d, so
there is some r such that 2r ≡ 1 (mod d). We claim that x2r ≡ x (mod p). By Euler’s theorem,
since xd ≡ 1 (mod p), since 2r ≡ 1 (mod d), and since d divides ϕ(p), we have x2r ≡ x1 ≡ x
(mod p). Thus, f (r)(x) = x.

Now, assume x ∈ Z∗
p has an order d which does not divide Q. Then, since d divides p − 1, d

must be even. By the previous lemma, x is not cyclic.

We know there exists an n so that f (n)(x) = x for x whose order divides Q, and the following
lemma gives the minimal such n.

Lemma 20. Let x ∈ Z∗
p be order d and cyclic. Then its period is the order of 2 modulo d.

Proof. The iteration sequence of x is x, x2, x22
, x23

, . . . , x2i
, . . .. Since x has order d, we may instead

look at the following sequence modulo d: 1, 2, 22, . . . , 2i, . . ., because elements from this sequence
are the exponents of x. The first i such that 2i ≡ 1 (mod d) is the period of x. It is also the order
of 2 modulo d.

By the previous lemma, all elements of odd order d have a period of n, where n is the order of
2 modulo d. By Theorem 11, there are ϕ(d) elements of order d, modulo p. Therefore, there are
ϕ(d)/n cycles of period n.

The following lemma will aid us in showing the structure of the trees.

Lemma 21. The preperiod of a quadratic nonresidue is `.

11



Proof. First, we will show quadratic residues modulo p = 2`Q + 1 have orders which are divisible
by 2`. Let x ∈ Z∗

p be a quadratic nonresidue. Then, by Theorem 12, x
p−1
2 6≡ 1 (mod p). This

means the order d of x divides p− 1 but not p−1
2 , so 2` divides d.

By induction, we will show the preperiod of an element x with order 2iq, where q is odd, is
i. First, if i = 0, then the order is odd, so x is cyclic, and has preperiod i = 0. Next, suppose
elements with order 2i−1u with odd u have preperiod i− 1. By Lemma 18, x2 has the order 2i−1q,
which has preperiod i− 1. Therefore, x has preperiod 1 + (i− 1) = i.

Since the order of a quadratic nonresidue x is 2`q, where q is odd, we conclude the preperiod
of x is `.

We will now show that there is a complete binary tree of ` levels attached to cyclic elements.
If x is cyclic, then it has two square roots because it is not 0. We will show x has exactly one

non-cyclic square root. At least one square root must be cyclic, for, if neither are, then they are
in the trees, which means that iterated squaring on x will never reach x, a contradiction. If both
square roots are cyclic, then iterated squaring of x will reach one of the square roots, which means
the other square root is not cyclic, a contradiction. Therefore, cyclic elements have exactly one
cyclic square root and one non-cyclic square root.

Let y be the non-cyclic square root of cyclic x. Then, by Lemma 18, since y2 must have odd
order x, the order of y is twice that of the order of x.

We will proceed by induction. Let {y1, y2, . . . , y
n
2 } be the elements on the nth level of the tree

attached to x, each of order 2nq, for some odd q. The base case is {y}, being the first level of the
tree, having order 2q, where q is the order of x.

If an element a ∈ Z∗
p has even order d, then a2 has order 1

2d. Thus, if a ∈ Z∗
p has even order,

and is a quadratic residue, then its two square roots have order 2d. The square roots are distinct
because of the single out-vertex property. Then, we have a new level {y11, y12, . . . , y2n1, y2n2}, where
yi1 and yi2 are the square roots of yi, and each of these elements has order 2n+1q.

By Lemma 21, this process will eventually stop with ` levels. Since each level of the tree is
filled, and each quadratic residue in the tree has two in-vertices, the tree is a complete binary tree.

This concludes the proof of the theorem.

3.1.2 Classification of quadratic iteration graphs when c = −2

This section is conjecture supported by examining the iteration graphs of about one-thousand
primes and consulting the On-Line Encyclopedia of Integer Sequences. It is included to show that,
as predicted by the non-rigorous Julia set argument, there is regular structure when c = −2.

Conjecture 22. Let p ≥ 3 be a prime number and f(x) = x2 − 2. Let ` be one less than the order
of 2 modulo p2 − 1. The iteration graph for f on Zp is the following:

• There are three classes of trees: trees with one level, a binary tree with ` levels, and complete
binary trees with ` levels.

• Let σ1 =
⌊p

4

⌋
. This is the number of cyclic elements with a tree of one level attached.

• σ2 is the number of cyclic elements with a complete binary tree of ` levels attached.

• Attached to the element −2 (which is cyclic), is a tree which is a complete binary tree of `−1
levels attached at its root to a single element.

12



• The relation p = 2σ1 + 2`−1 + 1 + 2`(σ`) is satisfied.

This conjecture does not constrain the entire structure of these graphs: the periods of the cyclic
elements are not known. Examples of iteration graphs are in Figure 2.

4 Tonelli algorithm

The Tonelli algorithm is a randomized algorithm for finding a square root of a quadratic residue
modulo a prime p in polynomial time, with respect to lg p. The algorithm is described in [Bach
156]. We will explain the algorithm in this paper using some language of quadratic iteration graphs.
We will omit a formal analysis of the running time of the algorithm, since the analysis is not the
purpose of this paper. Fixing a prime p > 2, let ` and Q be such that p− 1 = 2`Q with odd Q.

First, we note that if x ∈ Z∗
p is cyclic, then it is relatively straightforward to compute a square

root. In fact, y = x
Q+1

2 is a square root. Checking this, we note that since x is cyclic, it has an
order q which divides Q, so we see that y2 ≡ xQ+1 ≡ xQx ≡ x (mod p). We also see y is easily
computable for two reasons: Q + 1 is even (thus Q+1

2 is an integer), and there is a polynomial time
exponentiation algorithm (which was covered in 18.310).

There is no known procedure which is as simple for computing the square root of a general
element of Z∗

p. However, we may use tricks from group theory to turn the general square root
problem into the simple computation outlined above. For the remainder of the discussion, assume
f : Z∗

p → Z∗
p is defined to be f(x) = x2 (we may ignore 0 since only x = 0 satisfies f(x) = 0).

An overview of the Tonelli algorithm is, given a quadratic residue x ∈ Z∗
p and a quadratic

nonresidue g, we find an even exponent k so that gkx is cyclic. Cyclic elements have easily calculable
square roots, so let a square root of gkx be a. Then, ag−

1
2
k is a square root of x since (ag−

1
2
k)2 =

a2g−k = (gkx)g−k = x.
We claim that we can find a sequence of subgroups

H0 ⊂ H1 ⊂ . . . ⊂ H`

where H0 is the set of cyclic elements, H` = Z∗
p, and the index of Hi in Hi+1 is two, for all 0 ≤ i < `.

This requirement on index means that 2 |Hi| = |Hi+1| for all 0 ≤ i < `, which implies |Hi| = 2iQ,
since the number of cyclic elements is Q.

We will prove this by constructing these subgroups. Let H` = Z∗
p, and for each 0 ≤ i < `, let

Hi = f(Hi+1) (and by this we mean Hi = {f(x) | x ∈ Hi+1}). We now need to prove that the
Hi are, in fact, subgroups of Z∗

p. Clearly, H` is a subgroup of Z∗
p since H` = Z∗

p. We will proceed
by induction. Let i be so 0 ≤ i < `, and assume Hj is a subgroup of Z∗

p for all i < j ≤ `. Since
1 ∈ Hi+1 and f(1) = 1, Hi has an identity. Letting y1, y2 ∈ Hi, we will show y1y2 ∈ Hi. There are
x1 and x2 so f(x1) = y1 and f(x2) = y2. Since Hi+1 is closed under its operation, x1x2 ∈ Hi+1, so
f(x1x2) ∈ Hi. And,

f(x1x2) = (x1x2)2 = x2
1x

2
2 = f(x1)f(x2) = y1y2 ∈ Hi.

Thus, Hi is closed under its binary operation. Finally, Hi has inverses. Let y ∈ Hi and x be so
f(x) = y. We claim f(x−1) is an inverse of y. We see

yf(x−1) = x2(x−1)2 = (xx−1)2 = 12 = 1.
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Figure 2: Iteration graphs for f(x) = x2 − 2 with various moduli.
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Therefore, Hi is a subgroup of Hi+1, and likewise a subgroup of Z∗
p. This completes the induction.

This subgroup structure is very closely related to the iteration graph of p when c = 0. In fact,
H0 is the union of all the cycles in the graph, and each Hi is the union of all the ith levels of the
trees along with the elements of Hi−1. As a concrete example, for p = 19,

H0 = {1, 4, 5, 6, 7, 9, 11, 16, 17}
H1 = H0 ∪ {2, 3, 8, 10, 12, 13, 14, 15, 18},

and for p = 17,

H0 = {1}
H1 = H0 ∪ {16}
H2 = H1 ∪ {4, 13}
H3 = H2 ∪ {2, 8, 9, 15}
H4 = H3 ∪ {3, 5, 6, 7, 10, 11, 12, 14}.

This follows from the fact that H0 consists of all the cyclic elements, and Hi is the set of elements
of Z∗

p with an out-edge which leads into Hi−1, for 0 < i ≤ `. Another way of looking at the Tonelli
algorithm is that it finds a gk such that, if x is in the trees, then gkx is in some cycle. The procedure
for finding this k involves bringing x toward a cycle level by level.

From this relation between the subgroups and the quadratic iteration graph, we see that the
elements of Hi which are not in Hi−1 have preperiod i. This is an important fact for the following
lemma.

Lemma 23. Let g be a quadratic nonresidue in Z∗
p. If x ∈ Hi+1, for 0 ≤ i < ` − 1, then there is

some even exponent k so gkx ∈ Hi.

Note that this intentionally does not handle the case when x ∈ H`. Because x is a quadratic
residue, we are guaranteed x ∈ H`−1.

Proof. Say x is in Hi already. Then, letting k = 0, we trivially have gkx ∈ Hi.
Otherwise, say x 6∈ Hi. We claim that xHi is not Hi. If it were, then since 1 ∈ Hi, x ∈ xHi,

which implies x ∈ Hi, a contradiction. Now, because Hi has index two in Hi+1, we have shown
that Hi and xHi are the only two cosets of Hi in Hi+1.

We claim that, if k = 2`−i−1, then gk is in Hi+1 and not in Hi. Since g has a preperiod of `, if
0 ≤ m ≤ `, then f (m)(g) has preperiod `−m, which is to say f (m)(g) is in H`−m but not H`−m−1.
Thus, if m = `− i− 1, f (`−i−1)(g) is in Hi+1 but not Hi. And, f (`−i−1)(g) = gk.

Say y ∈ xHi. Then y = xh for some h ∈ Hi, which means xy = x2h. For sake of contradiction,
assume x2h ∈ xHi. Then there is an h′ so x2h = xh′, which implies x = h′h−1. But, since Hi is a
group, this implies x ∈ Hi, a contradiction.

Since gk is in Hi+1 but not in Hi, we have that gk is an element of xHi, so gkx is an element
of Hi.

And, because i < `− 1, k is divisible by two. Thus, we have the required even k.

In more detail, the Tonelli algorithm, then, is that we take some x ∈ Z∗
p and check if x

p−1
2 ≡ 1

(mod p) to see if it is a quadratic residue by Theorem 12. If it is, then x ∈ H`−1, and we can
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iteratively apply Lemma 23. We start with x`−1 = x. For each 0 ≤ i < ` − 1, we let ki be the
even number such that xi = gkixi+1 ∈ Hi. This gives a sequence of even k`−2, k`−1, . . . , k0 so that
(gk`−2gk`−1 · · · gk0)x is cyclic. Then, letting k = k`−2 . . . + k0, if a is a square root of the cyclic gkx,
then ag−

1
2
k is a square root of x modulo p.

The main difficulty with this algorithm, however, is in finding a quadratic nonresidue, which
is a representative element of H` − H`−1. As we’ve seen, no part of the described algorithm has
used random choices; this is the part which makes the algorithm randomized. If we examine the
structure of the iteration graph, we see that the quadratic nonresidues are the leaves of the trees,
which means that they are not in Hi for i < `.

However, since Hi is a group, no multiplication operation can generate a quadratic nonresidue,
which are all outside of Hi, so we are either left with having to use the addition operation (and the
means of doing so are unclear), or coming up with something else entirely (such as using non-field
properties of Zp).

5 Conclusion

The study of quadratic iteration graphs shows us that squares modulo a prime have a very nice
structure. But, going the other way and finding square roots is difficult. Intuitively, this is because
the levels of the trees form a subgroup structure on Z∗

p, and multiplicative operations within the
ith level of the cycles cannot leave these levels. And, we see that finding square roots of non-cyclic
elements and quadratic nonresidues are intimately connected: if one can find arbitrary square
roots of non-cyclic elements in polynomial time with respect to lg p, then iterative application of
the algorithm ultimately leads to a quadratic nonresidue in polynomial time, since ` ≈ lg p. And, if
one has a method of finding quadratic nonresidues in polynomial time, then the Tonelli algorithm
described above gives a way of computing square roots in polynomial time.
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