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Abstract

In this document, we will define the notion of a commutative trinary group, which is group-
like algebraic object with an associated trinary operation, show basic properties of these ob-
jects, and determine the trinary subgroups of F∗

p useful for understanding the basic structure
of quadratic residue graphs. We will only talk about trinary groups which are commutative 1)
because of the difficulties inherent in non-commutative algebra and 2) because the motivation
in studying trinary groups is to understand quadratic residues in F∗

p.

1 Introduction

A commutative trinary group is a nonempty set G and an operation f : G × G × G → G which
satisfies the following axioms:

1. Commutativity. For all a, b, c ∈ G, f(a, b, c) = f(a, c, b) = f(b, a, c) = f(b, c, a) = f(c, a, b) =
f(c, b, a).

2. Associativity. For all a, b, c, d, e ∈ G, f(f(a, b, c), d, e) = f(a, f(b, c, d), e) = f(a, b, f(c, d, e)).

3. Inverses. For all b ∈ G, there exists an x ∈ G such that f(a, b, x) = a for all a ∈ G.

We will tend to use infix or juxtaposition notation such as f(a, b, c) = abc or f(a, b, c) = a+b+c,
which is unambiguous due to the property of associativity. We will also assume that G is finite
unless otherwise specified.

First, we will give some very straightforward properties to aid in checking the axioms.

• Since a transposition and a 3-rotation together generate S3, for the commutativity property,
we need only check abc = bac = bca for all a, b, c ∈ G.

• It then follows that we only need to check (abc)de = a(bcd)e once we determine commutativity
to show associativity.

If we are given an abelian group G, we can induce a trinary group operation f defined by
f(a, b, c) = abc where multiplication is done using the binary operation. That commutativity and
associativity are inherited is clear. We see that inverses are also induced: say b ∈ G and b−1 is the
inverse of b under the binary group operation. Then, for any a ∈ G, f(a, b, b−1) = abb−1 = a.

Note that there is no property of identity in a commutative trinary group. Without first
definining one, let’s call i ∈ G an identity element. The property ai = a is meaningless in G
because there is no binary operation. Because of this, one may instead try abi = ab, but again,
there is no binary operation. This leads to the following definition:
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Definition 1. An element i ∈ G is called an identity of G if, for all a ∈ G, aii = a.

If there is an identity element i ∈ G, we may induce a binary operation g : G×G → G defined
by a, b 7→ abi to turn G into a binary commutative group. We will verify this. Assume a, b, c ∈ G:

• Closure. g(a, b) = abi ∈ G since G is a trinary group.

• Identity. g(a, i) = aii = a.

• Associativity. g(g(a, b), c) = (abi)ci = a(bci)i = g(a, g(b, c)).

• Inverses. Let x ∈ G be such that iax = i. Then g(a, x) = axi = i, so x = a−1.

However, such inverse elements are not necessarily unique, so many groups may be induced.
For instance, if G = Z/8Z, both 0 and 4 are identity elements since a+0+0 = a and a+4+4 = a.
This gives us two binary group operations g1(x, y) = x + y and g2(x, y) = x + y + 4. These groups,
however, are isomorphic, with ϕ : G1 → G2 defined by ϕ(x) = x + 4.

We see that if i is an identity element that iii = i. It is indeed the case that the implication
may be reversed, and this will be shown shortly.

Now, we will look at some basic properties for manipulating elements in these groups.

• Say b, c ∈ G. Then there exist x, y ∈ G so that (abc)xy = a for all a ∈ G. This follows
from two applications of the inverse existence axiom: first, there exists an x ∈ G so that
(aby)cx = aby, and second, there exists a y ∈ G so that aby = a. Thus, (abc)xy = a.

• Cancellation law. If abx1 = abx2 for a, b, x1, x2 ∈ G, then x1 = x2. This follows from the
previous property: there exist α, β ∈ G so that xiabαβ = xi for every value xi, which implies
x1 = abx1αβ = abx2αβ = x2.

• Inverses are unique. Say b ∈ G and x1, x2 ∈ G are such that abxi = a for all a ∈ G. Then
abx1 = abx2, and x1 = x2 follows from the cancellation law.

• Say i ∈ G. Then iii = i =⇒ i is an identity of G. We see for b ∈ G, bii = b(iii)i = (bii)ii.
By the cancellation law, bii = i.

2 Trinary Subgroups

A trinary subgroup of a commutative trinary group G is a nonempty subset H ⊂ G which is closed
under the operation of G and which has the axiom of inverses.

A coset of a trinary subgroup H, analogous to a coset of a binary subgroup, is a set abH =
{abh | h ∈ H} for a, b ∈ G. We will also use the same notation abS = {abs | s ∈ S} for any subset
S ⊂ G.

For any a, b ∈ G, we can see there exist α, β ∈ G so that αβ(abH) = H. Say x ∈ abH. Then
x = abh for some h ∈ H, so there exist α, β ∈ G so that αβx = h. Thus, αβ(abH) ⊂ H. Now, say
h ∈ H. Then, using the same α and β for the given a and b, we see h = αβ(abh), which implies
H ⊂ αβ(abH).

A corollary to this is that |H| = |abH| for every a, b ∈ G.

Theorem 2. Either (abH) ∩ (a′b′H) = ∅ or abH = a′b′H for any a, b, a′, b′ ∈ G.
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Proof. Assume the intersection is non-empty, that there is an x ∈ (abH)∩(a′b′H). Then x = abh =
a′b′h′ for some h, h′ ∈ H. Let y ∈ abH, so y = abη for some η ∈ H. There exist h−1, b−1 ∈ G
so xh−1b−1 = a, which implies y = (xh−1b−1)bη = xh−1η = (a′h′b′)h−1η = a′b′(h′h−1η). Since
h′, h−1, η ∈ H and H is closed under the trinary operation, h′h−1η ∈ H, so y ∈ a′b′H, and thus
abH ⊂ a′b′H. Similarly, we can go the other way to show abH ⊃ a′b′H, and therefore abH = a′b′H
if the intersection is non-empty.

Now assume the intersection is empty. Then it’s clear that abH 6= a′b′H.

Corollary 3. The cosets of H partition G.

It follows that |H| k = |G| for some integer k. We call this k the index of H in G, or [G : H].

Corollary 4 (Counting Theorem). Let H be a trinary subgroup of G. Then |G| = [G : H] |H|.

We can generate a trinary subgroup from an element x ∈ G by taking all powers of xk with
k = 2i + 1 for all integers i. We represent this trinary subgroup by 〈x〉. Also, by the counting
theorem, |〈x〉| divides |G| for all x. For instance, with 1 ∈ Z/8Z, 〈1〉 = {1, 3, 5, 7}, and 4 | 8.

3 Homomorphisms

A homomorphism ϕ : G → G′ between two commutative trinary groups G and G′ satisfies ϕ(abc) =
ϕ(a)ϕ(b)ϕ(c), for all a, b, c ∈ G.

The image of ϕ is a trinary group:

• Closure. For α, β, γ ∈ ϕ(G), there exist a, b, c ∈ G such that ϕ(a) = α, ϕ(b) = β, and
ϕ(c) = γ. Thus, αβγ = ϕ(a)ϕ(b)ϕ(c) = ϕ(abc) ∈ ϕ(G).

• Inverses. Say β ∈ ϕ(G). Let α ∈ ϕ(G), and let a, b ∈ G be such that ϕ(a) = α and ϕ(b) = β.
Then there exists an x ∈ G such that abx = a, which implies ϕ(abx) = ϕ(a), so αβϕ(x) = α.

Then, by the counting theorem, |ϕ(G)| divides |G′|.

Theorem 5. All ϕ−1(x) are of the same cardinality, where x ∈ ϕ(G).

Proof. We will show
∣∣ϕ−1(x1)

∣∣ =
∣∣ϕ−1(x2)

∣∣ for all x1, x2 ∈ ϕ(G). To do this, we will first show that
each element of ϕ−1(x1) has a corresponding element in ϕ−1(x2). There exists a unique z ∈ ϕ(G)
so that ax1z = a for all a ∈ ϕ(G) since ϕ(G) is a trinary subgroup. Fix some w ∈ ϕ−1(z) and
some y2 ∈ ϕ−1(x2). Then, for all y ∈ ϕ−1(x1), ϕ(yy2w) = x1x2z = x2, so yy2w ∈ ϕ−1(x2).
Since there exist elements α, β ∈ G so that αβyy2w = y, the map y 7→ yy2w is an injection, and
thus

∣∣ϕ−1(x1)
∣∣ ≤ ∣∣ϕ−1(x2)

∣∣. Swapping the roles of x1 and x2 in the above reasoning, we conclude∣∣ϕ−1(x1)
∣∣ =

∣∣ϕ−1(x2)
∣∣.

This implies there is an integer k so that |G| = k
∣∣ϕ−1(x)

∣∣ for all x ∈ ϕ(G). And, since the
fibres partition G, we arrive at the following corollary:

Corollary 6. |G| = |ϕ(G)|
∣∣ϕ−1(x)

∣∣ for all x ∈ ϕ(G).
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And, as a corollary to the corollary, |ϕ(G)| divides |G|.
If |G| ⊥ |G′|, then, since |ϕ(G)| divides |G′|, and |ϕ(G)| divides |G|, it must be the case that

|ϕ(G)| = 1, so there is some i ∈ G′ so ϕ(x) = i for all x ∈ G, which means i = ϕ(xxx) = iii, so i is
an identity element of G′.

Another way we may induce a binary group from a commutative trinary group G if we have
no identity element is to take a trinary subgroup H ⊂ G and create the map f : G × G → G/H
defined by f(x, y) = xyH, where G/H represents the set of all cosets xyH for all x, y ∈ G. The
image of f is an abelian group under the associated operation · : G/H ×G/H → G/H defined by
xyH · x′y′H → xyx′y′H:

• Closure. The operation generates another coset in G/H.

• Identity. If x ∈ G, there is an x−1 so axx−1 = a for all a ∈ G. Then H = f(x, x−1). Say
α1α2H ∈ G/H. We have H · α1α2H = α1α2H.

• Inverses. Let α1α2H ∈ G/H. There are α−1
1 , α−1

2 ∈ G so that aα1α2α
−1
1 α−1

2 = a for all
a ∈ G. Then α1α2H · α−1

1 α−1
2 H = H.

This induced group is of order |G| / |H| since the cosets partition the group.

4 Trinary Subgroups of Cn

In this section we will look at some of the trinary subgroups of Cn which will be useful in the
discussion of Fp.

Let integers k, q be chosen to satisfy n = 2kq with q odd, and say Cn = 〈x〉. Then, we can
create cyclic subgroups of Cn for integers 0 ≤ i ≤ k called Qi =

〈
x2k−i

〉
, so |Qi| = 2iq. We note

that Qi+1 ⊃ Qi with [Qi+1 : Qi] = 2 for 0 ≤ i < k.
If an element z ∈ Cn has order d, then we see that z ∈ Qi if d | 2iq since Qi has 2iq elements.
Let us define the sets Hi = Qi \Qi−1 for 0 < i ≤ k, and H0 = Q0. If z ∈ Hi, then z | 2iq and

z - 2i−1q, which implies z is of order 2ip with p | q. Therefore, Hi is the set of all elements of order
2ip with p | q.

The set of cosets Ci+1/Ci is simply {Ci,Hi+1} ≈ C2. So, if we take x1, x2, x3 ∈ Hi+1, the
product x1x2x3 ∈ Hi+1 as well. Thus, Hi+1 is closed under trinary multiplication.

Each element x ∈ Hi has inverse x−1. Because x and x−1 both have the same order in the
group Cn, x−1 ∈ Hi as well. Therefore Hi has trinary inverses as axx−1 = a for all a ∈ Hi.

We conclude that each Hi is a commutative trinary subgroup of Cn.
We can easily find more trinary subgroups in a similar manner by looking at the chain of

subgroups C2ip for p | q. For example, if 〈x〉 = Cn, we have Ri =
〈
x2iq

〉
(so R0 is the trivial

subgroup), and thus we have Ii = Qi \Qi−1 as commutative trinary subgroups.

5 Trinary Subgroups of F∗p
Since the multiplicative group F∗

p is cyclic and isomorphic to Cp−1, we may apply the discussion
above. If we take integers k, q so p− 1 = 2kq with q odd, we get the chain of cyclic subgroups Qi

as well as the trinary subgroups Hi.
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If x ∈ Hi, i > 0, then x has order d = 2ip with p | q. We see that the order of x2 is then 2i−1p.
Therefore x2 ∈ Hi−1. And, if x ∈ H0, since H0 = Q0, x2 ∈ H0.

This means there are homomorphisms ϕ : Hi → Hi−1 for all 0 < i ≤ k and ϕ : H0 → H0 defined
by ϕ(x) = x2. Note that |Hi| = 2i−1q for i > 0 and |H0| = q.

Remember that if x ∈ F∗
p is a square, there are exactly two distinct elements α1, α2 ∈ F∗

p such
that x = α2

1 = α2
2. If we look at the orders of the elements, handwave handwave, we also see that

each ϕ must be surjective.
Since ϕ : H0 → H0 is a surjection, it must be the case that ϕ is an automorphism, and the

fibres of each element are of cardinality one. Because |H0| = |H1|, ϕ : H1 → H0 must be an
isomorphism, and the fibres are also of cardinality one. Next, for each ϕ : Hi → Hi−1 with i > 1,
since |Hi| = 2 |Hi−1| and ϕ is a surjection, the fibres are all of cardinality two.

If we apply this to quadratic residue graphs (F∗
p, E) where ~xy ∈ E if x2 ≡ y (mod p), we see

that the graph is composed of directed rings whose elements are from H0, and complete binary
trees rooted from elements of H1, which each then connect to the elements of H0. And, each binary
tree must be of depth k.

We previously showed each level Hi is a commutative trinary subgroup of F∗
p.

One binary group we can induce is Hi/Ii, which has q elements. I’m fairly certain Hi/Ii ≈ Cq.
Thus, there is an element which generates Hi/Ii, and it’s possible to walk around each level Hi

given the 2i-th roots of 1 (which is the set Ii).

6 Further Work

I’m not sure if there’s a good geometric way for thinking about trinary groups as there is for
thinking about binary groups (which is as symmetries).
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